Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Differ ; 21(11): 1687-95, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24971484

RESUMO

The growth of new blood vessels by angiogenesis is essential for normal development, but can also cause or contribute to the pathology of numerous diseases. Recent studies have shown that BIM, a pro-apoptotic BCL2-family protein, is required for endothelial cell apoptosis in vivo, and can contribute to the anti-angiogenic effect of VEGF-A inhibitors in certain tumor models. Despite its importance, the extent to which BIM is autonomously required for physiological endothelial apoptosis remains unknown and its regulation under such conditions is poorly defined. While the transcription factor FOXO3 has been proposed to induce Bim in response to growth factor withdrawal, evidence for this function is circumstantial. We report that apoptosis was reduced in Bim(-/-) primary endothelial cells, demonstrating a cell-autonomous role for BIM in endothelial death following serum and growth factor withdrawal. In conflict with in vitro studies, BIM-dependent endothelial death in vivo did not require FOXO3. Moreover, endothelial apoptosis proceeded normally in mice lacking FOXO-binding sites in the Bim promoter. Bim mRNA was upregulated in endothelial cells starved of serum and growth factors and this was accompanied by the downregulation of miRNAs of the miR-17∼92 cluster. Bim mRNA levels were also elevated in miR-17∼92(+/-) endothelial cells cultured under steady-state conditions, suggesting that miR-17∼92 cluster miRNAs may contribute to regulating overall Bim mRNA levels in endothelial cells.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/fisiologia , Células Endoteliais/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Proteína 11 Semelhante a Bcl-2 , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/genética , Proteínas de Membrana/genética , Camundongos , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas/genética , RNA Mensageiro/metabolismo , Ativação Transcricional
2.
Cell Death Differ ; 20(10): 1370-80, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23872792

RESUMO

Hoxb8 overexpression immortalises haematopoietic progenitor cells in a growth-factor-dependant manner and co-operates with interleukin-3 (IL-3) to cause acute myeloid leukaemia. To further understand how Hoxb8 contributes to myeloid cell immortalisation, we generated IL-3-dependant myeloid cells expressing Hoxb8 under the control of an inducible promoter. Downregulation of Hoxb8, in the presence of IL-3, caused cell-cycle arrest and apoptosis in the majority of cells. Apoptosis was dependant on Bax and Bak and, in part, on Bim, which was repressed by Hoxb8. Deletion of the miR-17∼92 seed sequences in the Bim 3'UTR abolished Hoxb8-dependant regulation of Bim reporter constructs. Expression of all six miRNAs from this cluster were elevated when Hoxb8 was overexpressed. The miR-17∼92 cluster was required for repression of Bim in Hoxb8-immortalised cells and deletion of the miR-17∼92 cluster substantially inhibited Hoxb8, but not Hoxa9, mediated survival and proliferation. Hoxb8 appears to promote miR-17∼92 expression through c-Myc, a known transcriptional regulator of the miR-17∼92 cluster. We have uncovered a previously unrecognised link between Hoxb8 expression and microRNAs that provides a new insight into the oncogenic functions of Hoxb8.


Assuntos
Proteínas de Homeodomínio/genética , MicroRNAs/metabolismo , Regiões 3' não Traduzidas , Animais , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 11 Semelhante a Bcl-2 , Morte Celular/genética , Diferenciação Celular/genética , Processos de Crescimento Celular/genética , Regulação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Transfecção , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...