Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(26): eadp0895, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38941470

RESUMO

The recent discovery of the large piezoelectric response of Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) ceramics induced by samarium doping has provided a substantially improved functionality to the group of lead-based relaxor-ferroelectric materials. Different mechanisms have been so far proposed for the large piezoelectricity; however, the explanations are contradictory and focused on a unified description. Here, we use nonlinear harmonic piezoelectric measurements combined with multiscale structural analysis to clarify the origins of the ultrahigh piezoelectric response of samarium-doped PMN-PT. Our methodological approach allowed us to separate the multiple piezoelectric contributions, revealing their quantitative role in the total response. The results show that the ultrahigh piezoelectricity cannot be attributed to a single mechanism but is rather a complex combination of different contributions originating from the multiple effects of samarium doping on the long- and short-range structure of PMN-PT. The study offers a baseline for future engineering of the key material parameters affecting the large piezoelectric response of relaxor-ferroelectric ceramics.

2.
Polymers (Basel) ; 16(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38931970

RESUMO

The physical properties as well as thermal and electrical stability of copper particles can be improved by surface protection, which mainly depends on the coating material. Our study was, therefore, focused on the rheological, thermal, mechanical and electrical characterization of polymer composites by comparing uncoated (Cu), silver-coated (Cu@Ag) and silica-coated (Cu@Si) copper flakes in low-density polyethylene at various volume concentrations (up to 40%). Interactions among particles were investigated by rheological properties, as these indicate network formation (geometrical entanglement), which is important for mechanical reinforcement as well as establishing an electric pathway (electrical percolation). The results showed that geometrical and electrical percolation were the same for Cu and Cu@Si, ~15%, while, surprisingly, Cu@Ag exhibited much lower percolation, ~7.5%, indicating the fusion of the Ag coating material, which also decreased crystal growth (degree of crystallinity). Furthermore, the magnitude of the rheological and mechanical response remained the same for all investigated materials, indicating that the coating materials do not provide any load transfer capabilities. However, they profoundly affect electron transfer, in that, Cu@Ag exhibited superior conductivity (74.4 S/m) compared to Cu (1.7 × 10-4 S/m) and Cu@Si (1.5 × 10-10 S/m). The results obtained are important for the design of advanced polymer composites for various applications, particularly in electronics where enhanced electrical conductivity is desired.

3.
Nano Lett ; 23(15): 6994-7000, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37470766

RESUMO

Mechanical pressure controls the structural, electric, and magnetic order in solid-state systems, allowing tailoring of their physical properties. A well-established example is ferroelastic ferroelectrics, where the coupling between pressure and the primary symmetry-breaking order parameter enables hysteretic switching of the strain state and ferroelectric domain engineering. Here, we study the pressure-driven response in a nonferroelastic ferroelectric, ErMnO3, where the classical stress-strain coupling is absent and the domain formation is governed by creation-annihilation processes of topological defects. By annealing ErMnO3 polycrystals under variable pressures in the MPa regime, we transform nonferroelastic vortex-like domains into stripe-like domains. The width of the stripe-like domains is determined by the applied pressure as we confirm by three-dimensional phase field simulations, showing that pressure leads to oriented layer-like periodic domains. Our work demonstrates the possibility to utilize mechanical pressure for domain engineering in nonferroelastic ferroelectrics, providing a lever to control their dielectric and piezoelectric responses.

4.
J Mater Chem C Mater ; 11(21): 6902-6911, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37332483

RESUMO

While BiFeO3-based solid solutions show great promise for applications in energy conversion and storage, realizing this promise necessitates understanding the structure-property relationship in particular pertaining to the relaxor-like characteristics often exhibited by solid solutions with polar-to-non-polar morphotropic phase boundaries. To this end, we investigated the role of the compositionally-driven relaxor state in (100 - x)BiFeO3-xSrTiO3 [BFO-xSTO], via in situ synchrotron X-ray diffraction under bipolar electric-field cycling. The electric-field induced changes to the crystal structure, phase fraction and domain textures were monitored via the {111}pc, {200}pc, and 1/2{311}pc Bragg peaks. The dynamics of the intensities and positions of the (111) and (111̄) reflections reveal an initial non-ergodic regime followed by long-range ferroelectric ordering after extended poling cycles. The increased degree of random multi-site occupation in BFO-42STO compared to BFO-35STO is correlated with an increase of the critical electric field needed to induce the non-ergodic-to-ferroelectric transition, and a decrease in the degree of domain reorientation. Although both compositions show an irreversible transition to a long-range ferroelectric state, our results suggest that the weaker ferroelectric response in BFO-42STO is related to an increase in ergodicity. This, in turn, serves to guide the development of BFO-based systems into promising platform for further property engineering towards specific capacitor applications.

5.
Nano Lett ; 23(2): 750-756, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36458590

RESUMO

The atomic-level response of zigzag ferroelectric domain walls (DWs) was investigated with in situ bias scanning transmission electron microscopy (STEM) in a subcoercive-field regime. Atomic-level movement of a single DW was observed. Unexpectedly, the change in the position of the DW, determined from the atomic displacement, did not follow the position of the strain field when the electric field was applied. This can be explained as low mobility defect segregation at the initial DW position, such as ordered clusters of oxygen vacancies. Further, the triangular apex of the zigzag wall is pinned, but it changes its shape and becomes asymmetric under electrical stimuli. This phenomenon is accompanied by strain and bound charge redistribution. We report on unique atomic-scale phenomena at the DW level and show that in situ STEM studies with atomic resolution are very relevant as they complement, and sometimes challenge, the knowledge gained from lower resolution studies.

6.
Nat Commun ; 12(1): 3509, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34083529

RESUMO

The nature of the "forbidden" local- and long-range polar order in nominally non-polar paraelectric phases of ferroelectric materials has been an open question since the discovery of ferroelectricity in oxide perovskites, ABO3. A currently considered model suggests locally correlated displacements of B-site atoms along a subset of <111> cubic directions. Such off-site displacements have been confirmed experimentally; however, being essentially dynamic in nature they cannot account for the static nature of the symmetry-forbidden polarization implied by the macroscopic experiments. Here, in an atomically resolved study by aberration-corrected scanning transmission electron microscopy complemented by Raman spectroscopy, we reveal, directly visualize and quantitatively describe static, 2-4 nm large polar nanoclusters in the nominally non-polar cubic phases of (Ba,Sr)TiO3 and BaTiO3. These results have implications on understanding of the atomic-scale structure of disordered materials, the origin of precursor states in ferroelectrics, and may help answering ambiguities on the dynamic-versus-static nature of nano-sized clusters.

7.
Nat Commun ; 11(1): 1762, 2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32273515

RESUMO

Electro-mechanical interactions between charged point defects and domain walls play a key role in the functional properties of bulk and thin-film ferroelectrics. While for perovskites the macroscopic implications of the ordering degree of defects on domain-wall pinning have been reported, atomistic details of these mechanisms remain unclear. Here, based on atomic and nanoscale analyses, we propose a pinning mechanism associated with conductive domain walls in BiFeO3, whose origin lies in the dynamic coupling of the p-type defects gathered in the domain-wall regions with domain-wall displacements under applied electric field. Moreover, we confirm that the degree of defect ordering at the walls, which affect the domain-wall conductivity, can be tuned by the cooling rate used during the annealing, allowing us to determine how this ordering affects the atomic structure of the walls. The results are useful in the design of the domain-wall architecture and dynamics for emerging nanoelectronic and bulk applications.

8.
J Phys Chem Lett ; 10(22): 7071-7076, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31664832

RESUMO

The interaction of BiFeO3 and Co-doped BiFeO3 thin-film surfaces with water vapor is examined using photoelectron spectroscopy. Water exposure results in an upward shift of the Fermi energy, which is limited by the reduction of Bi and Fe in undoped BiFeO3 and by the reduction of Co in oxidized Co-doped BiFeO3. The results highlight the importance of surface potential changes induced by the interaction of solid surfaces with water and the ability of photoelectron spectroscopy to quantitatively determine electrochemical reduction potentials and defect energy levels.

9.
Nat Commun ; 9(1): 4928, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-30467315

RESUMO

Dynamics of domain walls are among the main features that control strain mechanisms in ferroic materials. Here, we demonstrate that the domain-wall-controlled piezoelectric behaviour in multiferroic BiFeO3 is distinct from that reported in classical ferroelectrics. In situ X-ray diffraction was used to separate the electric-field-induced lattice strain and strain due to displacements of non-180° domain walls in polycrystalline BiFeO3 over a wide frequency range. These piezoelectric strain mechanisms have opposing trends as a function of frequency. The lattice strain increases with increasing frequency, showing negative piezoelectric phase angle (i.e., strain leads the electric field), an unusual feature so far demonstrated only in the total macroscopic piezoelectric response. Domain-wall motion exhibits the opposite behaviour, it decreases in magnitude with increasing frequency, showing more common positive piezoelectric phase angle (i.e., strain lags behind the electric field). Charge redistribution at conducting domain walls, oriented differently in different grain families, is demonstrated to be the cause.

10.
Sensors (Basel) ; 18(5)2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29751590

RESUMO

Piezoelectric ceramic resonant pressure sensors have shown potential as sensing elements for harsh environments, such as elevated temperatures. For operating temperatures exceeding ~250 °C, conventional and widely used Pb(Zr,Ti)O3 (PZT) piezoelectrics should be replaced. Here, a ceramic pressure sensor from low-temperature co-fired ceramics (LTCC) was constructed by integrating a piezoelectric actuator made from bismuth ferrite (BiFeO3) on a diaphragm. This ferroelectric material was selected because of its high Curie temperature (TC = 825 °C) and as a lead-free piezoelectric extensively investigated for high-temperature applications. In order to construct a sensor with suitable pressure sensitivity, numerical simulations were used to define the optimum construction dimensions. The functionality of the pressure sensor was tested up to 201 °C. The measurements confirmed a pressure sensitivity, i.e., resonance frequency shift of the sensor per unit of pressure, of -8.7 Hz/kPa up to 171 °C. It was suggested that the main reason for the hindered operation at the elevated temperatures could lie in the thermo-mechanical properties of the diaphragm and the adhesive bonding at the actuator-diaphragm interconnection.

11.
Sci Rep ; 8(1): 4120, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29515168

RESUMO

Large piezoelectric coefficients in polycrystalline lead zirconate titanate (PZT) are traditionally achieved through compositional design using a combination of chemical substitution with a donor dopant and adjustment of the zirconium to titanium compositional ratio to meet the morphotropic phase boundary (MPB). In this work, a different route to large piezoelectricity is demonstrated. Results reveal unexpectedly high piezoelectric coefficients at elevated temperatures and compositions far from the MPB. At temperatures near the Curie point, doping with 2 at% Sm results in exceptionally large piezoelectric coefficients of up to 915 pm/V. This value is approximately twice those of other donor dopants (e.g., 477 pm/V for Nb and 435 pm/V for La). Structural changes during the phase transitions of Sm-doped PZT show a pseudo-cubic phase forming ≈50 °C below the Curie temperature. Possible origins of these effects are discussed and the high piezoelectricity is posited to be due to extrinsic effects. The enhancement of the mechanism at elevated temperatures is attributed to the coexistence of tetragonal and pseudo-cubic phases, which enables strain accommodation during electromechanical deformation and interphase boundary motion. This work provides insight into possible routes for designing high performance piezoelectrics which are alternatives to traditional methods relying on MPB compositions.

12.
Nat Mater ; 17(4): 297-298, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29555995

Assuntos
Osso e Ossos , Cerâmica
13.
Nat Mater ; 16(3): 322-327, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27842075

RESUMO

Mobile charged defects, accumulated in the domain-wall region to screen polarization charges, have been proposed as the origin of the electrical conductivity at domain walls in ferroelectric materials. Despite theoretical and experimental efforts, this scenario has not been directly confirmed, leaving a gap in the understanding of the intriguing electrical properties of domain walls. Here, we provide atomic-scale chemical and structural analyses showing the accumulation of charged defects at domain walls in BiFeO3. The defects were identified as Fe4+ cations and bismuth vacancies, revealing p-type hopping conduction at domain walls caused by the presence of electron holes associated with Fe4+. In agreement with the p-type behaviour, we further show that the local domain-wall conductivity can be tailored by controlling the atmosphere during high-temperature annealing. This work has possible implications for engineering local conductivity in ferroelectrics and for devices based on domain walls.

14.
ACS Appl Mater Interfaces ; 8(30): 19626-34, 2016 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-27388568

RESUMO

Bismuth ferrite (BiFeO3) is difficult to pole because of the combination of its high coercive field and high electrical conductivity. This problem is particularly pronounced in thick films. The poling, however, must be performed to achieve a large macroscopic piezoelectric response. This study presents evidence of a prominent and reproducible self-poling effect in few-tens-of-micrometer-thick BiFeO3 films. Direct and converse piezoelectric measurements confirmed that the as-sintered BiFeO3 thick films yield d33 values of up to ∼20 pC/N. It was observed that a significant self-poling effect only appears in cases when the films are heated and cooled through the ferroelectric-paraelectric phase transition (Curie temperature TC ∼ 820 °C). These self-poled films exhibit a microstructure with randomly oriented columnar grains. The presence of a compressive strain gradient across the film thickness cooled from above the TC was experimentally confirmed and is suggested to be responsible for the self-poling effect. Finally, the macroscopic d33 response of the self-poled BiFeO3 film was characterized as a function of the driving-field frequency and amplitude.

15.
Sci Rep ; 6: 19630, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26791098

RESUMO

Electromechanical properties such as d33 and strain are significantly enhanced at morphotropic phase boundaries (MPBs) between two or more different crystal structures. Many actuators, sensors and MEMS devices are therefore systems with MPBs, usually between polar phases in lead (Pb)-based ferroelectric ceramics. In the search for Pb-free alternatives, systems with MPBs between polar and non-polar phases have recently been theorized as having great promise. While such an MPB was identified in rare-earth (RE) modified bismuth ferrite (BFO) thin films, synthesis challenges have prevented its realization in ceramics. Overcoming these, we demonstrate a comparable electromechanical response to Pb-based materials at the polar-to-non-polar MPB in Sm modified BFO. This arises from 'dual' strain mechanisms: ferroelectric/ferroelastic switching and a previously unreported electric-field induced transition of an anti-polar intermediate phase. We show that intermediate phases play an important role in the macroscopic strain response, and may have potential to enhance electromechanical properties at polar-to-non-polar MPBs.

16.
Artigo em Inglês | MEDLINE | ID: mdl-25585392

RESUMO

The route to phase-pure BiFeO3 (BFO) ceramics with excellent ferroelectric and electromechanical properties is severely impeded by difficulties associated with the perovskite phase stability during synthesis. This has meant that dopants and solid solutions with BFO have been investigated as a means of not only improving the functional properties, but also of improving the perovskite phase formation of BFO-based ceramics. The present work focuses on Sm-modified BFO ceramics of composition Bi0.88Sm0.12FeO3. The polarization and strain behaviors were investigated as a function of the phase composition, microstructure, and chemical composition. Addition of Sm reduces the susceptibility of the BFO perovskite to phase degradation by Si impurities. Si was observed to react into Sm-rich grains dispersed within the microstructure, with no large increases in the amount of bismuth-parasitic phases, namely Bi25FeO39 and Bi2Fe4O9. These as-prepared ceramics exhibited robust polarization behavior showing maximum remnant polarizations of ~40 to 50 µC/cm(2). The electric-fieldinduced strain showed an appreciable stability in terms of the driving field frequency with maximum peak-to-peak strains of ~0.3% and a coercive field of ~130 kV/cm.


Assuntos
Bismuto/química , Cerâmica/química , Compostos Férricos/química , Compostos de Cálcio , Teste de Materiais , Óxidos , Titânio , Difração de Raios X
17.
Chem Soc Rev ; 42(18): 7571-637, 2013 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-23558752

RESUMO

The aim of this review article on recent developments of mechanochemistry (nowadays established as a part of chemistry) is to provide a comprehensive overview of advances achieved in the field of atomistic processes, phase transformations, simple and multicomponent nanosystems and peculiarities of mechanochemical reactions. Industrial aspects with successful penetration into fields like materials engineering, heterogeneous catalysis and extractive metallurgy are also reviewed. The hallmarks of mechanochemistry include influencing reactivity of solids by the presence of solid-state defects, interphases and relaxation phenomena, enabling processes to take place under non-equilibrium conditions, creating a well-crystallized core of nanoparticles with disordered near-surface shell regions and performing simple dry time-convenient one-step syntheses. Underlying these hallmarks are technological consequences like preparing new nanomaterials with the desired properties or producing these materials in a reproducible way with high yield and under simple and easy operating conditions. The last but not least hallmark is enabling work under environmentally friendly and essentially waste-free conditions (822 references).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...