Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Biomol Chem ; 22(16): 3328-3339, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38584463

RESUMO

Fullerene C60 and its malonate derivatives, produced via the Bingel-Hirsch reaction, have displayed promising properties against various diseases. These molecules have great therapeutic potential, but their broad use has been limited due to poor aqueous solubility and toxicity caused by accumulation. In this study, we synthesized new malonates and malonamides attached to first- and second-generation polyester dendrons using click chemistry (CuAAC). These dendrons were then linked at C60 through the Bingel-Hirsch reaction, resulting in an amphiphilic system that retains the hydrophobic nature of C60. The dendronized malonate derivatives showed good reaction yields for the Bingel-Hirsch mono-adducts and were easier to work with than the corresponding malonamides. However, the malonamide derivatives, which were obtained through a multistep reaction sequence, showed moderate yields in the Bingel-Hirsch reaction. Surprisingly, removing acetonide protecting groups from dendritic architectures was more challenging than anticipated, likely due to product decomposition. Only the corresponding free malonate derivatives 25 and 26 were obtained, but in a low yield due to decomposition under the reaction conditions. Meanwhile, it was not possible to obtain the corresponding malonamide derivatives 27 and 28. Currently, efforts are being made to improve the production of the desired molecules and to design new synthesis routes that allow direct access to the desired poly-hydroxylated derivatives. These derivatives will be evaluated as multitarget ligands against Alzheimer's disease, through their use as inhibitors of amyloid ß-peptide aggregation, acetylcholinesterase modulators, and antioxidants.

2.
Phys Chem Chem Phys ; 19(29): 19334-19340, 2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28703831

RESUMO

The forces that bind the components of a host-guest complex to generate a stable supramolecular system are noncovalent interactions. The enthalpy of this association, ΔasH°, usually measured using calorimetry, quantifies the magnitude of such interactions and is directly related to the stability of the supramolecular complex formed. Using Calvet calorimetry to determine the enthalpies of solution and reaction in water, the enthalpy of association was derived for a supramolecular system formed by the anionic macrocycle anti-disulfodibenzo[24]crown-8 ([DSDB24C8]2-) and the dicationic guest paraquat [PQT]2+. The calorimetric results show an exothermic association process, which indicates the generation of strong interactions between the components of the ion pair. This is consistent with the formation of a stable supramolecular complex [PQT][DSDB24C8], whose spatial arrangement in aqueous solution is proposed based on spectroscopic analysis.

3.
J Phys Chem A ; 121(29): 5509-5519, 2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28671828

RESUMO

This work presents a thermochemical study of two derivatives of phthalimide: the isomers 3-nitrophthalimide and 4-nitrophthalimide. The enthalpies of formation for these compounds in the solid phase were obtained by combustion calorimetry. Using ths thermogravimetry technique, the enthalpies of vaporization were obtained. The enthalpies of sublimation were calculated from enthalpies of fusion and vaporization. From experimental data and by ab initio methods, the enthalpies of formation in the gas phase were calculated. With these results, it was possible to determine their relative stability, and it was found that 4-nitrophthalimide is more stable than its isomer 3-nitrophthalimide. This tendency is similar to that of 3-nitrophthalic anhydride and 4-nitrophthalic anhydride, as reported in a previous work by our research group. The enthalpy of isomerization was also obtained, and a good correlation with that of phthalic anhydride derivatives was found. Finally, with the values obtained, the enthalpic difference resulting when the imide group is substituted by an anhydride group was determined.

4.
J Phys Chem A ; 119(20): 4953-60, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25894675

RESUMO

Captodative olefins are highly reactive and selective substrates in Diels-Alder and 1,3-dipolar cycloadditions. Seeking an explanation of this fact based on molecular energetics, the thermochemical analysis of 1-acetyl vinyl p-nitrobenzoate, a captodative olefin, has been performed using semi-micro-combustion calorimetry, effusion measurements through a quartz crystal microbalance, and differential scanning calorimetry. The molar standard combustion energy and enthalpy as well as the molar standard formation enthalpy are reported along with sublimation and melting enthalpies. From these data, experimental formation enthalpy of the gas-phase is derived and compared with the theoretical value calculated through the density functional theory procedure. The olefinic bond enthalpy is also computed from experimental data, and the relevance of the results is discussed.

5.
J Phys Chem B ; 111(30): 9031-5, 2007 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-17608526

RESUMO

The values of the molar standard enthalpies of formation, Delta(f)H(o)(m)(C(76), cr) = (2705.6 +/- 37.7) kJ x mol(-1), Delta(f)H(o)(m)(C(78), cr) = (2766.5 +/- 36.7) kJ x mol(-1), and Delta(f)H(o)(m)(C(84), cr) = (2826.6 +/- 42.6) kJ x mol(-1), were determined from the energies of combustion, measured by microcombustion calorimetry on a high-purity sample of the D(2) isomer of fullerene C(76), as well as on a mixture of the two most abundant constitutional isomers of C(78) (C(2nu)-C(78) and D(3)-C(78)) and C(84) (D(2)-C(84), and D(2d)-C(84). These values, combined with the published data on the enthalpies of sublimation of each cluster, lead to the gas-phase enthalpies of formation, Delta(f)H(o)(m)(C(76), g) = (2911.6 +/- 37.9) kJ x mol(-1); Delta(f)H(o)(m)(C(78), g) = (2979.3 +/- 37.2) kJ x mol(-1), and Delta(f)H(o)(m)(C(84), (g)) = (3051.6 +/- 43.0) kJ x mol(-1), results that were found to compare well with those reported from density functional theory calculations. Values of enthalpies of atomization, strain energies, and the average C-C bond energy were also derived for each fullerene. A decreasing trend in the gas-phase enthalpy of formation and strain energy per carbon atom as the size of the cluster increases is found. This is the first experimental evidence that these fullerenes become more stable as they become larger. The derived experimental average C-C bond energy E(C-C) = 461.04 kJ x mol(-1) for fullerenes is close to the average bond energy E(C-C) = 462.8 kJ x mol(-1) for polycyclic aromatic hydrocarbons (PAHs).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...