Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 29(39): 58472-58483, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35776303

RESUMO

The present work reports the changes for the mesoporous materials SBA-15 and KIT-6 associated with the structural, textural, and chemical properties when they are subjected to thermo-alkaline treatment. Despite the fact that the silica supports have not a strong affinity for CO2 adsorption, the adsorption enthalpy profiles (ΔHads) reported that the substrates subjected to the thermo-alkaline treatment (S15H and K6H) have a greater energetic affinity towards CO2 capture if compared to the precursory solids (S15 and K6). The ΔHads is - 26.7 kJ mol-1 at 0.15 mmol g-1 by supported S15H and K6H while the ΔHads is - 20. 7 kJ mol-1 and - 18.7 kJ mol-1 by K6 and S15, respectively, at the same CO2 coverage. Furthermore, the CO2 adsorption performances by the hydrolytic condensation between silica supports and the N´- (3-trimethoxysilylpropyl)diethylenetriamine (NAEPTES) or 3-aminopropiltriethoxysilane (APTES) are presented and it can be seen that the best performer for CO2 adsorption is reported for the S15HN since it is able to absorb 0.93 mmol at 0.15 atm at 318 K. Thereby, the outcomes show that the effects of porous curvature and the magnitude of the amine species are parameters to be considered, as well as the thermo-alkaline treatment, in order to improve the subsequent surface reactions on silica supports. The materials were characterized by XRD, TEM, and N2 adsorption at 77 K, NIR, and pyridine thermodesorption using Fourier Transform Infrared Spectroscopy (FTIR-Py), NMR for 29Si and 13C, DSC, and CO2 adsorption.

2.
Materials (Basel) ; 9(11)2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-28774017

RESUMO

Special preparation of Santa Barbara Amorphous (SBA)-15, mesoporous silica with highly hexagonal ordered, these materials have been carried out for creating adsorbents exhibiting an enhanced and partially selective adsorption toward CO2. This creation starts from an adequate conditioning of the silica surface, via a thermo-alkaline treatment to increase the population of silanol species on it. CO2 adsorption is only reasonably achieved when the SiO2 surface becomes aminated after put in contact with a solution of an amino alkoxide compound in the right solvent. Unfunctionalized and amine-functionalized substrates were characterized through X-ray diffraction, N2 sorption, Raman spectroscopy, electron microscopy, 29Si solid-state Nuclear Magnetic Resonance (NMR), and NH3 thermal programmed desorption. These analyses proved that the thermo-alkaline procedure desilicates the substrate and eliminates the micropores (without affecting the SBA-15 capillaries), present in the original solid. NMR analysis confirms that the hydroxylated solid anchors more amino functionalizing molecules than the unhydroxylated material. The SBA-15 sample subjected to hydroxylation and amino-functionalization displays a high enthalpy of interaction, a reason why this solid is suitable for a strong deposition of CO2 but with the possibility of observing a low-pressure hysteresis phenomenon. Contrastingly, CH4 adsorption on amino-functionalized, hydroxylated SBA-15 substrates becomes almost five times lower than the CO2 one, thus giving proof of their selectivity toward CO2. Although the amount of retained CO2 is not yet similar to or higher than those determined in other investigations, the methodology herein described is still susceptible to optimization.

3.
Molecules ; 20(10): 19463-88, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26512642

RESUMO

The entrapping of physicochemical active molecules inside mesoporous networks is an appealing field of research due to the myriad of potential applications in optics, photocatalysis, chemical sensing, and medicine. One of the most important reasons for this success is the possibility of optimizing the properties that a free active species displays in solution but now trapped inside a solid substrate. Additionally it is possible to modulate the textural characteristics of substrates, such as pore size, specific surface area, polarity and chemical affinity of the surface, toward the physical or chemical adhesion of a variety of adsorbates. In the present document, two kinds of non-silicon metal alkoxides, Zr and Ti, are employed to prepare xerogels containing entrapped tetrapyrrolic species that could be inserted beforehand in analogue silica systems. The main goal is to develop efficient methods for trapping or binding tetrapyrrole macrocycles inside TiO2 and ZrO2 xerogels, while comparing the properties of these systems against those of the SiO2 analogues. Once the optimal synthesis conditions for obtaining translucent monolithic xerogels of ZrO2 and TiO2 networks were determined, it was confirmed that these substrates allowed the entrapment, in monomeric form, of macrocycles that commonly appear as aggregates within the SiO2 network. From these experiments, it could be determined that the average pore diameters, specific surface areas, and water sorption capacities depicted by each one of these substrates, are a consequence of their own nature combined with the particular structure of the entrapped tetrapyrrole macrocycle. Furthermore, the establishment of covalent bonds between the intruding species and the pore walls leads to the obtainment of very similar pore sizes in the three different metal oxide (Ti, Zr, and Si) substrates as a consequence of the templating effect of the encapsulated species.


Assuntos
Dióxido de Silício/química , Tetrapirróis/química , Titânio/química , Zircônio/química , Géis , Indóis/química , Isoindóis , Transição de Fase , Porosidade , Espectrofotometria Ultravioleta , Propriedades de Superfície , Água/química
4.
Molecules ; 19(2): 2261-85, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24566303

RESUMO

A sol-gel methodology has been duly developed in order to perform a controlled covalent coupling of tetrapyrrole macrocycles (e.g., porphyrins, phthalocyanines, naphthalocyanines, chlorophyll, etc.) to the pores of metal oxide networks. The resulting absorption and emission spectra intensities in the UV-VIS-NIR range have been found to depend on the polarity existing inside the pores of the network; in turn, this polarization can be tuned through the attachment of organic substituents to the tetrapyrrrole macrocycles before bonding them to the pore network. The paper shows clear evidence of the real possibility of maximizing fluorescence emissions from metal-free bases of substituted tetraphenylporphyrins, especially when these molecules are bonded to the walls of functionalized silica surfaces via the attachment of alkyl or aryl groups arising from the addition of organo-modified alkoxides.


Assuntos
Óxidos/química , Porfirinas/química , Dióxido de Silício/química , Absorção , Fluorescência , Géis , Metais/química , Propriedades de Superfície
5.
Molecules ; 18(1): 588-653, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23292327

RESUMO

The crossed and linked histories of tetrapyrrolic macrocycles, interwoven with new research discoveries, suggest that Nature has found in these structures a way to ensure the continuity of life. For diverse applications porphyrins or phthalocyanines must be trapped inside solid networks, but due to their nature, these compounds cannot be introduced by thermal diffusion; the sol-gel method makes possible this insertion through a soft chemical process. The methodologies for trapping or bonding macrocycles inside pristine or organo-modified silica or inside ZrO2 xerogels were developed by using phthalocyanines and porphyrins as molecular probes. The sizes of the pores formed depend on the structure, the cation nature, and the identities and positions of peripheral substituents of the macrocycle. The interactions of the macrocyclic molecule and surface Si-OH groups inhibit the efficient displaying of the macrocycle properties and to avoid this undesirable event, strategies such as situating the macrocycle far from the pore walls or to exchange the Si-OH species by alkyl or aryl groups have been proposed. Spectroscopic properties are better preserved when long unions are established between the macrocycle and the pore walls, or when oligomeric macrocyclic species are trapped inside each pore. When macrocycles are trapped inside organo-modified silica, their properties result similar to those displayed in solution and their intensities depend on the length of the alkyl chain attached to the matrix. These results support the prospect of tuning up the pore size, surface area, and polarity inside the pore cavities in order to prepare efficient catalytic, optical, sensoring, and medical systems. The most important feature is that research would confirm again that tetrapyrrolic macrocycles can help in the development of the authentic pore engineering in materials science.


Assuntos
Fármacos Fotossensibilizantes/história , Tetrapirróis/história , Géis , História do Século XIX , História do Século XX , Transição de Fase , Fotoquimioterapia , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Porosidade , Tetrapirróis/síntese química , Tetrapirróis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA