Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 594, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38910245

RESUMO

BACKGROUND: Downy mildew is the most relevant disease of quinoa and the most widespread. Though, little is known about the genetics of resistance to this disease. The objective of this study was to identify the genomic regions controlling downy mildew resistance in quinoa and candidate genes for this trait. With this aim we carried out a GWAS analysis in a collection formed by 211 quinoa accessions from different origins. This approach was combined with inheritance studies and Bulk Segregant Analysis (BSA) in a segregating population. RESULTS: GWAS analysis identified 26 genomic regions associated with the trait. Inheritance studies in a F2 population segregating for resistance revealed the existence of a major single dominant gene controlling downy mildew complete resistance in quinoa accession PI614911. Through BSA, this gene was found to be located in chromosome 4, in a region also identified by GWAS. Furthermore, several plant receptors and resistance genes were found to be located into the genomic regions identified by GWAS and are postulated as candidate genes for resistance. CONCLUSIONS: Until now, little was known about the genetic control of downy mildew resistance in quinoa. A previous inheritance study suggested that resistance to this disease was a quantitative polygenic trait and previous GWAS analyses were unable to identify accurate markers for this disease. In our study we demonstrate the existence of, at least, one major gene conferring resistance to this disease, identify the genomic regions involved in the trait and provide plausible candidate genes involved in defense. Therefore, this study significantly increases our knowledge about the genetics of downy mildew resistance and provides relevant information for breeding for this important trait.


Assuntos
Chenopodium quinoa , Resistência à Doença , Genes de Plantas , Estudo de Associação Genômica Ampla , Doenças das Plantas , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Resistência à Doença/genética , Chenopodium quinoa/genética
2.
Sci Rep ; 11(1): 18651, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34545138

RESUMO

The African citrus psyllid Trioza erytreae is one of the major threats to citrus industry as the vector of the incurable disease known as huanglongbing (HLB) or citrus greening. The psyllid invaded the northwest of the Iberian Peninsula 6 years ago. The invasion alarmed citrus growers in the Mediterranean basin, the largest citrus producing area in Europe, which is still free of HLB. Before our study, no research had been carried out on the genetic diversity of T. erytreae populations that have invaded the Iberian Peninsula and the archipelagos of the Macaronesia (Madeira and the Canary Islands). In this study, combining microsatellites markers and mtDNA barcoding analysis, we characterize the genetic diversity, structure and maternal relationship of these new invasive populations of T. erytreae and those from Africa. Our results suggest that the outbreaks of T. erytreae in the Iberian Peninsula may have derived from the Canary Islands. The populations of T. erytreae that invaded Macaronesia and the Iberian Peninsula are likely to have originated from southern Africa. We anticipate our results to be a starting point for tracking the spread of this invasive pest outside of Africa and to be important for optimizing contingency and eradication plans in newly invaded and free areas.


Assuntos
DNA Mitocondrial/genética , Hemípteros/genética , Repetições de Microssatélites/genética , Animais , Citrus/química , Código de Barras de DNA Taxonômico/métodos , Europa (Continente) , Insetos Vetores , Espécies Introduzidas/tendências , Mitocôndrias/genética , Filogenia , Doenças das Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...