Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(18): 4844-4850, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38682807

RESUMO

Most single quantum emitters display non-steady emission properties. Models that explain this effect have primarily relied on photoluminescence measurements that reveal variations in intensity, wavelength, and excited-state lifetime. While photoluminescence excitation spectroscopy could provide complementary information, existing experimental methods cannot collect spectra before individual emitters change in intensity (blink) or wavelength (spectrally diffuse). Here, we present an experimental approach that circumvents such issues, allowing the collection of excitation spectra from individual emitters. Using rapid modulation of the excitation wavelength, we collect and classify excitation spectra from individual CdSe/CdS/ZnS core/shell/shell quantum dots. The spectra, along with simultaneous time-correlated single-photon counting, reveal two separate emission-reduction mechanisms caused by charging and trapping, respectively. During bright emission periods, we also observe a correlation between emission red-shifts and the increased oscillator strength of higher excited states. Quantum-mechanical modeling indicates that diffusion of charges in the vicinity of an emitter polarizes the exciton and transfers the oscillator strength to higher-energy transitions.

2.
J Phys Chem Lett ; 13(18): 4145-4151, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35506998

RESUMO

In semiconductor nanocrystals, excited electrons relax through multiple radiative and nonradiative pathways. This complexity complicates characterization of their decay processes with standard time- and temperature-dependent photoluminescence studies. Here, we exploit a simple nanophotonic approach to augment such measurements and to address open questions related to nanocrystal emission. We place nanocrystals at different distances from a gold reflector to affect radiative rates through variations in the local density of optical states. We apply this approach to spherical CdSe-based nanocrystals to probe the radiative efficiency and polarization properties of the lowest dark and bright excitons by analyzing temperature-dependent emission dynamics. For CdSe-based nanoplatelets, we identify the charge-carrier trapping mechanism responsible for strongly delayed emission. Our method, when combined with careful modeling of the influence of the nanophotonic environment on the relaxation dynamics, offers a versatile strategy to disentangle the complex excited-state decay pathways present in fluorescent nanocrystals as well as other emitters.

3.
ACS Nano ; 15(12): 19185-19193, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34780165

RESUMO

Optical beams with helical phase fronts carry orbital angular momentum (OAM). To exploit this property in integrated photonics, micrometer-scale devices that generate beams with well-defined OAM are needed. Consequently, lasers based on microring resonators decorated with azimuthal grating elements have been investigated. However, future development of such devices requires better methods to determine their OAM, as current approaches are challenging to implement and interpret. If a simple and more sensitive technique were available, OAM microring lasers could be better understood and further improved. In particular, despite most devices being pulsed, their OAM output has been assumed to be constant. OAM fluctuations, which are detrimental for applications, need to be quantified. Here, we fabricate quantum-dot microring lasers and demonstrate a simple measurement method that can straightforwardly determine the magnitude and sign of the OAM down to the level of individual laser pulses. We exploit a Fourier microscope with a cylindrical lens and then investigate three types of microring lasers: with circular symmetry, with "blazed" grating elements, and with unidirectional rotational modes. Our results confirm that previous measurement techniques obscured key details about the OAM generation. For example, while time-averaged OAM from our unidirectional laser is very similar to our blazed grating device, single-pulse measurements show that detrimental effects of mode competition are almost entirely suppressed in the former. Nevertheless, even in this case, the OAM output exhibits shot-to-shot fluctuations. Thus, our approach reveals important details in the underlying device operation that can aid in the improvement of micrometer-scale sources with pure OAM output.

4.
ACS Nano ; 14(5): 5223-5232, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32159334

RESUMO

Arrays of metallic particles patterned on a substrate have emerged as a promising design for on-chip plasmonic lasers. In past examples of such devices, the periodic particles provided feedback at a single resonance wavelength, and organic dye molecules were used as the gain material. Here, we introduce a flexible template-based fabrication method that allows a broader design space for Ag particle-array lasers. Instead of dye molecules, we integrate colloidal quantum dots (QDs), which offer better photostability and wavelength tunability. Our fabrication approach also allows us to easily adjust the refractive index of the substrate and the QD-film thickness. Exploiting these capabilities, we demonstrate not only single-wavelength lasing but dual-wavelength lasing via two distinct strategies. First, by using particle arrays with rectangular lattice symmetries, we obtain feedback from two orthogonal directions. The two output wavelengths from this laser can be selected individually using a linear polarizer. Second, by adjusting the QD-film thickness, we use higher-order transverse waveguide modes in the QD film to obtain dual-wavelength lasing at normal and off-normal angles from a symmetric square array. We thus show that our approach offers various design possibilities to tune the laser output.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...