Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Electron Mater ; 5(9): 5025-5031, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37779889

RESUMO

Resistive random access memories (RRAM), based on the formation and rupture of conductive nanoscale filaments, have attracted increased attention for application in neuromorphic and in-memory computing. However, this technology is, in part, limited by its variability, which originates from the stochastic formation and extreme heating of its nanoscale filaments. In this study, we used scanning thermal microscopy (SThM) to assess the effect of filament-induced heat spreading on the surface of metal oxide RRAMs with different device designs. We evaluate the variability of TiO2 RRAM devices with area sizes of 2 × 2 and 5 × 5 µm2. Electrical characterization shows that the variability indicated by the standard deviation of the forming voltage is ∼2 times larger for 5 × 5 µm2 devices than for the 2 × 2 µm2 ones. Further knowledge on the reason for this variability is gained through the SThM thermal maps. These maps show that for 2 × 2 µm2 devices the formation of one filament, i.e., hot spot at the device surface, happens reliably at the same location, while the filament location varies for the 5 × 5 µm2 devices. The thermal information, combined with the electrical, interfacial, and geometric characteristics of the device, provides additional insights into the operation and variability of RRAMs. This work suggests thermal engineering and characterization routes to optimize the efficiency and reliability of these devices.

2.
Sci Adv ; 8(13): eabk1514, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35353574

RESUMO

Resistive random access memory (RRAM) is an important candidate for both digital, high-density data storage and for analog, neuromorphic computing. RRAM operation relies on the formation and rupture of nanoscale conductive filaments that carry enormous current densities and whose behavior lies at the heart of this technology. Here, we directly measure the temperature of these filaments in realistic RRAM with nanoscale resolution using scanning thermal microscopy. We use both conventional metal and ultrathin graphene electrodes, which enable the most thermally intimate measurement to date. Filaments can reach 1300°C during steady-state operation, but electrode temperatures seldom exceed 350°C because of thermal interface resistance. These results reveal the importance of thermal engineering for nanoscale RRAM toward ultradense data storage or neuromorphic operation.

3.
Sci Adv ; 6(3): eaay4508, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32010770

RESUMO

Monolithic strong magnetic induction at the mtesla to tesla level provides essential functionalities to physical, chemical, and medical systems. Current design options are constrained by existing capabilities in three-dimensional (3D) structure construction, current handling, and magnetic material integration. We report here geometric transformation of large-area and relatively thick (~100 to 250 nm) 2D nanomembranes into multiturn 3D air-core microtubes by a vapor-phase self-rolled-up membrane (S-RuM) nanotechnology, combined with postrolling integration of ferrofluid magnetic materials by capillary force. Hundreds of S-RuM power inductors on sapphire are designed and tested, with maximum operating frequency exceeding 500 MHz. An inductance of 1.24 µH at 10 kHz has been achieved for a single microtube inductor, with corresponding areal and volumetric inductance densities of 3 µH/mm2 and 23 µH/mm3, respectively. The simulated intensity of the magnetic induction reaches tens of mtesla in fabricated devices at 10 MHz.

4.
Nano Lett ; 20(2): 1461-1467, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31951419

RESUMO

Two-dimensional (2D) materials have recently been incorporated into resistive memory devices because of their atomically thin nature, but their switching mechanism is not yet well understood. Here we study bipolar switching in MoTe2-based resistive memory of varying thickness and electrode area. Using scanning thermal microscopy (SThM), we map the surface temperature of the devices under bias, revealing clear evidence of localized heating at conductive "plugs" formed during switching. The SThM measurements are correlated to electro-thermal simulations, yielding a range of plug diameters (250 to 350 nm) and temperatures at constant bias and during switching. Transmission electron microscopy images reveal these plugs result from atomic migration between electrodes, which is a thermally-activated process. However, the initial forming may be caused by defect generation or Te migration within the MoTe2. This study provides the first thermal and localized switching insights into the operation of such resistive memory and demonstrates a thermal microscopy technique that can be applied to a wide variety of traditional and emerging memory devices.

5.
ACS Appl Mater Interfaces ; 11(42): 39254-39262, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31559818

RESUMO

The increasing threat of multidrug-resistant microorganisms is a cause of worldwide concern. This motivates a necessity to discover new antimicrobial agents or new mechanisms for microorganism eradication, different from those currently used. Here, we report an effective antibacterial ceramic glaze that combines different bactericidal mechanisms. Specifically, the used methodology of the glaze results in glass-free edge crystallizations of feldspar structures at the ceramic surface. A combination of Rutherford backscattering spectroscopy, scanning electron microscopy, and Raman microscopy is used to determine the chemical elements and crystallizations at the ceramic surface. Moreover, Kelvin probe force microscopy demonstrates that the presence of glass-free edges in feldspar needle crystals (semiconductor phase) on a glass matrix (insulator phase) promotes the formation of semiconductor-insulator interface barriers. These barriers act as reservoirs of electric charges of ∼1.5 V, producing a discharge exceeding the microorganism membrane breakdown value (up to 0.5 V). Furthermore, the surface crystallizations account for the formation of a microroughness that limits biofilm formation. Both factors result in high antibacterial activity in the range of R > 4 for Escherichia coli and Staphylococcus aureus. This approach opens new possibilities to attain bactericidal surfaces and to understand the role of physical interaction as a main antimicrobial mechanism.


Assuntos
Anti-Infecciosos/química , Cerâmica/química , Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Cerâmica/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Propriedades de Superfície
6.
Nanoscale ; 6(14): 7858-65, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24933655

RESUMO

To date, there is no experimental characterization of thermal conductivity of semiconductor polymeric individual nanowires embedded in a matrix. This work reports on scanning thermal microscopy measurements in a 3ω configuration to determine how the thermal conductivity of individual nanowires made of a model conjugated polymer (P3HT) is modified when decreasing their diameters. We observe a reduction of thermal conductivity, from λNW = 2.29 ± 0.15 W K(-1) m(-1) to λNW = 0.5 ± 0.24 W K(-1) m(-1), when the diameter of nanowires is reduced from 350 nm to 120 nm, which correlates with the polymer crystal orientation measured by WAXS. Through this work, the foundations for future polymer thermal transport engineering are presented.

7.
Nanoscale ; 5(23): 11526-44, 2013 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-24113712

RESUMO

Physical properties at the nanoscale are novel and different from those in bulk materials. Over the last few decades, there has been an ever growing interest in the fabrication of nanowire structures for a wide variety of applications including energy generation purposes. Nevertheless, the study of their transport properties, such as thermal conductivity, electrical conductivity or Seebeck coefficient, remains an experimental challenge. For instance, in the particular case of nanostructured thermoelectrics, theoretical calculations have shown that nanowires offer a promising way of enhancing the hitherto low efficiency of these materials in the conversion of temperature differences into electricity. Therefore, within the thermoelectrical community there has been a great experimental effort in the measurement of these quantities in actual nanowires. The measurements of these properties at the nanoscale are also of interest in fields other than energy, such as electrical components for microchips, field effect transistors, sensors, and other low scale devices. For all these applications, knowing the transport properties is mandatory. This review deals with the latest techniques developed to perform the measurement of these transport properties in nanowires. A thorough overview of the most important and modern techniques used for the characterization of different kinds of nanowires will be shown.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...