Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1514, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374047

RESUMO

Electroencephalograms (EEGs) display a mixture of rhythmic and broadband fluctuations, the latter manifesting as an apparent 1/f spectral trend. While network oscillations are known to generate rhythmic EEG, the neural basis of broadband EEG remains unexplained. Here, we use biophysical modelling to show that aperiodic neural activity can generate detectable scalp potentials and shape broadband EEG features, but that these aperiodic signals do not significantly perturb brain rhythm quantification. Further model analysis demonstrated that rhythmic EEG signals are profoundly corrupted by shifts in synapse properties. To examine this scenario, we recorded EEGs of human subjects being administered propofol, a general anesthetic and GABA receptor agonist. Drug administration caused broadband EEG changes that quantitatively matched propofol's known effects on GABA receptors. We used our model to correct for these confounding broadband changes, which revealed that delta power, uniquely, increased within seconds of individuals losing consciousness. Altogether, this work details how EEG signals are shaped by neurophysiological factors other than brain rhythms and elucidates how these signals can undermine traditional EEG interpretation.


Assuntos
Anestésicos Gerais , Propofol , Humanos , Propofol/farmacologia , Eletroencefalografia , Encéfalo , Estado de Consciência
2.
Am J Respir Crit Care Med ; 205(2): 171-182, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34748722

RESUMO

Rationale: Predicting recovery of consciousness in unresponsive, brain-injured individuals has crucial implications for clinical decision-making. Propofol induces distinctive brain network reconfiguration in the healthy brain as it loses consciousness. In patients with disorders of consciousness, the brain network's reconfiguration to propofol may reveal the patient's underlying capacity for consciousness. Objectives: To design and test a new metric for the prognostication of consciousness recovery in disorders of consciousness. Methods: Using a within-subject design, we conducted an anesthetic protocol with concomitant high-density EEG in 12 patients with a disorder of consciousness after a brain injury. We quantified the reconfiguration of EEG network hubs and directed functional connectivity before, during, and after propofol exposure and obtained an index of propofol-induced network reconfiguration: the adaptive reconfiguration index. We compared the index of patients who recovered consciousness 3 months after EEG (n = 3) to that of patients who did not recover or remained in a chronic disorder of consciousness (n = 7) and conducted a logistic regression to assess prognostic accuracy. Measurements and Main Results: The adaptive reconfiguration index was significantly higher in patients who later recovered full consciousness (U value = 21, P = 0.008) and able to discriminate with 100% accuracy whether the patient recovered consciousness. Conclusions: The adaptive reconfiguration index of patients who recovered from a disorder of consciousness at 3-month follow-up was linearly separable from that of patients who did not recover or remained in a chronic disorder of consciousness on the single-subject level. EEG and propofol can be administered at the bedside with few contraindications, affording the adaptive reconfiguration index tremendous translational potential as a prognostic measure of consciousness recovery in acute clinical settings.


Assuntos
Lesões Encefálicas/induzido quimicamente , Lesões Encefálicas/fisiopatologia , Coma/induzido quimicamente , Coma/fisiopatologia , Transtornos da Consciência/induzido quimicamente , Transtornos da Consciência/fisiopatologia , Estado de Consciência/efeitos dos fármacos , Propofol/efeitos adversos , Adolescente , Adulto , Idoso , Período de Recuperação da Anestesia , Feminino , Previsões , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Recuperação de Função Fisiológica/efeitos dos fármacos , Adulto Jovem
3.
Front Hum Neurosci ; 15: 706693, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34594193

RESUMO

The temporal trajectories and neural mechanisms of recovery of cognitive function after a major perturbation of consciousness is of both clinical and neuroscientific interest. The purpose of the present study was to investigate network-level changes in functional brain connectivity associated with the recovery and return of six cognitive functions after general anesthesia. High-density electroencephalograms (EEG) were recorded from healthy volunteers undergoing a clinically relevant anesthesia protocol (propofol induction and isoflurane maintenance), and age-matched healthy controls. A battery of cognitive tests (motor praxis, visual object learning test, fractal-2-back, abstract matching, psychomotor vigilance test, digital symbol substitution test) was administered at baseline, upon recovery of consciousness (ROC), and at half-hour intervals up to 3 h following ROC. EEG networks were derived using the strength of functional connectivity measured through the weighted phase lag index (wPLI). A partial least squares (PLS) analysis was conducted to assess changes in these networks: (1) between anesthesia and control groups; (2) during the 3-h recovery from anesthesia; and (3) for each cognitive test during recovery from anesthesia. Networks were maximally perturbed upon ROC but returned to baseline 30-60 min following ROC, despite deficits in cognitive performance that persisted up to 3 h following ROC. Additionally, during recovery from anesthesia, cognitive tests conducted at the same time-point activated distinct and dissociable functional connectivity networks across all frequency bands. The results highlight that the return of cognitive function after anesthetic-induced unconsciousness is task-specific, with unique behavioral and brain network trajectories of recovery.

4.
Brain Sci ; 11(7)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202435

RESUMO

A consistent limitation when designing event-related potential paradigms and interpreting results is a lack of consideration of the multivariate factors that affect their elicitation and detection in behaviorally unresponsive individuals. This paper provides a retrospective commentary on three factors that influence the presence and morphology of long-latency event-related potentials-the P3b and N400. We analyze event-related potentials derived from electroencephalographic (EEG) data collected from small groups of healthy youth and healthy elderly to illustrate the effect of paradigm strength and subject age; we analyze ERPs collected from an individual with severe traumatic brain injury to illustrate the effect of stimulus presentation speed. Based on these critical factors, we support that: (1) the strongest paradigms should be used to elicit event-related potentials in unresponsive populations; (2) interpretation of event-related potential results should account for participant age; and (3) speed of stimulus presentation should be slower in unresponsive individuals. The application of these practices when eliciting and recording event-related potentials in unresponsive individuals will help to minimize result interpretation ambiguity, increase confidence in conclusions, and advance the understanding of the relationship between long-latency event-related potentials and states of consciousness.

5.
Neurosci Conscious ; 2020(1): niaa017, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33376599

RESUMO

Neuroimaging methods have improved the accuracy of diagnosis in patients with disorders of consciousness (DOC), but novel, clinically translatable methods for prognosticating this population are still needed. In this case series, we explored the association between topographic and global brain network properties and prognosis in patients with DOC. We recorded high-density electroencephalograms in three patients with acute or chronic DOC, two of whom also underwent an anesthetic protocol. In these two cases, we compared functional network motifs, network hubs and power topography (i.e. topographic network properties), as well as relative power and graph theoretical measures (i.e. global network properties), at baseline, during exposure to anesthesia and after recovery from anesthesia. We also compared these properties to a group of healthy, conscious controls. At baseline, the topographic distribution of nodes participating in alpha motifs resembled conscious controls in patients who later recovered consciousness and high relative power in the delta band was associated with a negative outcome. Strikingly, the reorganization of network motifs, network hubs and power topography under anesthesia followed by their return to a baseline patterns upon recovery from anesthesia, was associated with recovery of consciousness. Our findings suggest that topographic network properties measured at the single-electrode level might provide more prognostic information than global network properties that are averaged across the brain network. In addition, we propose that the brain network's capacity to reorganize in response to a perturbation is a precursor to the recovery of consciousness in DOC patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...