Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(14)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39063697

RESUMO

Infections related to orthopedic/stomatology surgery are widely recognized as a significant health concern. Therefore, the development of new materials with superior biological properties and good stability could represent a valuable alternative to the classical treatments. In this paper, the fluorine-substituted hydroxyapatite (FHAp) suspension, with the chemical formula Ca10(PO4)6(OH)2-2xF2x (where x = 0.05), was prepared using a modified coprecipitation technique. Stability studies were conducted by zeta potential and ultrasound measurements for the first time. The X-ray diffraction (XRD) patterns of FHAp powders displayed a hexagonal structure akin to that of pure hydroxyapatite (HAp). The XPS general spectrum revealed peaks corresponding to the constituent elements of fluorine-substituted hydroxyapatite such as calcium, phosphorus, oxygen, and fluorine. The purity of the obtained FHAp samples was confirmed by energy-dispersive X-ray spectroscopy (EDS) studies. The FHAp morphology was evaluated by scanning electron microscopy (SEM) measurements. Fourier-transform infrared spectroscopy (FTIR) studies were performed in order to study the vibrational properties of the FHAp samples. The FHAp suspensions were tested for antibacterial activity against reference strains such as Staphylococcus aureus 25923 ATCC, Escherichia coli ATCC 25922, and Candida albicans ATCC 10231. Additionally, the biocompatibility of the FHAp suspensions was assessed using human fetal osteoblastic cells (hFOB 1.19 cell line). The results of our biological tests suggest that FHAp suspensions are promising candidates for the future development of new biocompatible and antimicrobial agents for use in the biomedical field.

2.
Materials (Basel) ; 17(14)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39063744

RESUMO

This study presents research into the unique method of depositing carbon layers onto processed surfaces, during finishing with abrasive films, on a global basis. The authors of this article are holders of the patent for this method. What makes this technology outstanding is that it integrates processes, whereby micro-finishing and the deposition of a carbon layer onto freshly exposed surface fragments is achieved simultaneously, in a single process. Among the main advantages accruable from this process is the reduction of surface irregularities, while the deposition of a carbon layer is achieved simultaneously. Ultrathin graphite layers can be widely used in conditions where other methods of reducing the coefficient of friction are not possible, such as in regard to micromechanisms. This article illustrates the application of carbon coating, end on, on a surface processed with abrasive film, containing intergranular spaces, saturated with graphite. Thin carbon layers were obtained on two substrates that did not contain carbon in their initial composition: soda-lime glass and a tin-bronze alloy. It was performed through microscopic examinations of the produced surface, roughness analyses of these surfaces, and analysis of the chemical compositions determined by two methods, namely EDS and GDOES, proving the existence of the coatings. The aim of this paper is to prove the possibility and efficiency of using graphite-impregnated lapping films in the deposition process of carbon films, with improved surface smoothness, durability, and wear resistance. The produced coatings will be tested in regard to their operational properties in further research. The authors underline the potential of this method to revolutionize surface treatment processes, due to the significant advantages it offers across various industries.

3.
Materials (Basel) ; 17(10)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38793500

RESUMO

The use of CNC equipment that integrates several machining operations eliminates downtime due to changes in setup and clamping of workpieces in more than one machining device. A review of CNC equipment and tools known from the literature and from manufacturers' offerings indicates that new technical solutions are being developed to integrate two or more technological operations. However, these examples have numerous limitations and are mostly not suitable for machining surfaces with complex shapes. An example of such solutions is the use of a dual-tool grinding head, which integrates the process of rough grinding with a ceramic grinding wheel and finish grinding with a flexible grinding wheel. Unfortunately, it has the disadvantage of being limited by the angular shape of the ceramic grinding wheel, making it unable to adapt to the complex geometries of the shaped surfaces being ground. The need to overcome this limitation became the motivation for the research work described in this article. By means of experimental research, it was verified what effect the radial outline on the periphery of a ceramic grinding wheel realized by rough grinding would have on the surface roughness parameters obtained in the process of grinding shaped surfaces. For this purpose, grinding processes using a ceramic wheel with a conical and radial outline were compared. The result of the study was a summary of the surface roughness parameters Sa, St, Sq, Spk, Str, and Sds obtained after two-stage machining (rough and finish grinding). The obtained analysis results showed that changing the axial outline of the ceramic grinding wheel makes it possible to significantly expand the range of applications of the dual-tool head without negatively affecting the quality of the machined surface. Thus, such an improvement will make it possible to increase the applicability of the head by grinding shaped surfaces with a radial profile of curvature.

4.
Materials (Basel) ; 16(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38068147

RESUMO

The paper presents the results of preliminary research on the possibility of synthesizing ZnO-TiO2 mixed coatings by plasma electrochemical oxidation (PEO). The aim of the work was to synthesize TiO2-ZnO mixed coatings on a titanium substrate from an electrolyte containing ZnO nanoparticles (NPs) and to assess the parameters of PEO on the structure, chemical composition, and properties of the obtained oxide coatings. The PEO process was carried out under various current-voltage conditions using different signals: DC, DC pulse, and AC. In this work, optimal conditions for the PEO process were determined to obtain well-adhering oxide coatings with the highest possible content of ZnO. The structure and morphology of the resulting oxide coatings were investigated, and their chemical and phase composition was comprehensively examined (EDX, XRD, XPS, and GD-OES). In addition, their basic optical properties were assessed. It has been shown that in the PEO DC pulse process, it is possible to obtain oxide coatings characterized by a high degree of structure order, high ZnO content in the oxide coating (3.6 at.%, XPS), and prospective applications for photocatalytic purposes (3.12 eV).

5.
Materials (Basel) ; 16(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37374594

RESUMO

Hydroxyapatite doped with magnesium and zinc in chitosan matrix biocomposites have great potential for applications in space technology, aerospace, as well as in the biomedical field, as a result of coatings with multifunctional properties that meet the increased requirements for wide applications. In this study, coatings on titanium substrates were developed using hydroxyapatite doped with magnesium and zinc ions in a chitosan matrix (MgZnHAp_Ch). Valuable information concerning the surface morphology and chemical composition of MgZnHAp_Ch composite layers were obtained from studies that performed scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), metallographic microscopy, and atomic force microscopy (AFM). The wettability of the novel coatings, based on magnesium and zinc-doped biocomposites in a chitosan matrix on a titanium substrate, was evaluated by performing water contact angle studies. Furthermore, the swelling properties, together with the coating's adherence to the titanium substrate, were also analyzed. The AFM results emphasized that the composite layers exhibited the surface topography of a uniform layer, and that there were no evident cracks and fissures present on the investigated surface. Moreover, antifungal studies concerning the MgZnHAp_Ch coatings were also carried out. The data obtained from quantitative antifungal assays highlight the strong inhibitory effects of MgZnHAp_Ch against C. albicans. Additionally, our results underline that after 72 h of exposure, the MgZnHAp_Ch coatings display fungicidal features. Thus, the obtained results suggest that the MgZnHAp_Ch coatings possess the requisite properties that make them suitable for use in the development of new coatings with enhanced antifungal features.

6.
Polymers (Basel) ; 15(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38231963

RESUMO

In the present study, sage-coated zinc-doped hydroxyapatite was incorporated into a dextran matrix (7ZnHAp-SD), and its physico-chemical and antimicrobial activities were investigated. A 7ZnHAp-SD nanocomposite suspension was obtained using the co-precipitation method. The stability of the nanocomposite suspension was evaluated using ultrasound measurements. The stability parameter calculated relative to double-distilled water as a reference fluid highlights the very good stability of the 7ZnHAp-SD suspension. X-ray diffraction (XRD) experiments were performed to evaluate the characteristic diffraction peak of the hydroxyapatite phase. Valuable information regarding the morphology and chemical composition of 7ZnHAp-SD was obtained via scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS) studies. Fourier-transform infrared spectroscopy (FTIR) measurements were performed on the 7ZnHAp-SD suspensions in order to evaluate the functional groups present in the sample. Preliminary studies on the antimicrobial activity of 7ZnHAp-SD suspensions against the standard strains of Staphylococcus aureus 25923 ATCC, Enterococcus faecalis 29212 ATCC, Escherichia coli 25922 ATCC, and Pseudomonas aeruginosa 27853 ATCC were conducted. More than that, preliminary studies on the biocompatibility of 7ZnHAp-SD were conducted using human cervical adenocarcinoma (HeLa) cells, and their results emphasized that the 7ZnHAp-SD sample did not exhibit a toxic effect and did not induce any noticeable changes in the morphological characteristics of HeLa cells. These preliminary results showed that these nanoparticles could be possible candidates for biomedical/antimicrobial applications.

7.
Micromachines (Basel) ; 13(10)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36295927

RESUMO

In the present study, we report the development and characterization of composite layers (by spin coating) based on magnesium-doped hydroxyapatite in a chitosan matrix, (Ca10-xMgx(PO4)6(OH)2; xMg = 0, 0.08 and 0.3; HApCh, 8MgHApCh and 30MgHApCh). The MgHApCh composite layers were investigated using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS) techniques. The in vitro biological evaluation included the assessment of their cytotoxicity on MG63 osteoblast-like cells and antifungal activity against Candida albicans ATCC 10231 fungal cell lines. The results of the physico-chemical characterization highlighted the obtaining of uniform and homogeneous composite layers. In addition, the biological assays demonstrated that the increase in the magnesium concentration in the samples enhanced the antifungal effect but also decreased their cytocompatibility. However, for certain optimal magnesium ion concentrations, the composite layers presented both excellent biocompatibility and antifungal properties, suggesting their promising potential for biomedical applications in both implantology and dentistry.

8.
Materials (Basel) ; 15(15)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35955308

RESUMO

This is the first report regarding the effect of gamma irradiation on chitosan-coated magnesium-doped hydroxyapatite (xMg = 0.1; 10 MgHApCh) layers prepared by the spin-coating process. The stability of the resulting 10 MgHApCh gel suspension used to obtain the layers has been shown by ultrasound measurements. The presence of magnesium and the effect of the irradiation process on the studied samples were shown by X-ray photoelectron spectroscopy (XPS). The XPS results obtained for irradiated 10 MgHApCh layers suggested that the magnesium and calcium contained in the surface layer are from tricalcium phosphate (TCP; Ca3(PO4)2) and hydroxyapatite (HAp). The XPS analysis has also highlighted that the amount of TCP in the surface layer increased with the irradiation dose. The energy-dispersive X-ray spectroscopy (EDX) evaluation showed that the calcium decreases with the increase in the irradiation dose. In addition, a decrease in crystallinity and crystallite size was highlighted after irradiation. By atomic force microscopy (AFM) we have obtained images suggesting a good homogeneity of the surface of the non-irradiated and irradiated layers. The AFM results were also sustained by the scanning electron microscopy (SEM) images obtained for the studied samples. The effect of gamma-ray doses on the Fourier transform infrared spectroscopy (ATR-FTIR) spectra of 10 MgHApCh composite layers was also evaluated. The in vitro antifungal assays proved that 10 MgHApCh composite layers presented a strong antifungal effect, correlated with the irradiation dose and incubation time. The study of the stability of the 10 MgHApCh gel allowed us to achieve uniform and homogeneous layers that could be used in different biomedical applications.

9.
Materials (Basel) ; 15(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35888306

RESUMO

Surface engineering is an interdisciplinary topic thatcontains many branches of science related to materials science, chemistry, and physics [...].

10.
Materials (Basel) ; 14(7)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810612

RESUMO

In this work, nanohydroxyapatite coatings with nanosilver and nanocopper have been fabricated and studied. The presented results concern coatings with a chemical composition that has never been proposed before. The present research aims to characterize the effects of nanosilver and nanocopper, dispersed in nanohydroxyapatite coatings and deposited on a new, non-toxic Ti13Zr13Nb alloy, on the physical and mechanical properties of coatings. The coatings were obtained by a one-stage electrophoretic process. The surface topography, and the chemical and phase compositions of coatings were examined with scanning electron microscopy, atomic force microscopy, X-ray diffractometry, glow discharge optical emission spectroscopy, and energy-dispersive X-ray spectroscopy. The mechanical properties of coatings were determined by nanoindentation tests, while coatings adhesion was determined by nanoscratch tests. The results demonstrate that copper addition increases the hardness and adhesion. The presence of nanosilver has no significant influence on the adhesion of coatings.

11.
Materials (Basel) ; 14(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466504

RESUMO

This paper describes the microstructure and properties of titanium-based composites obtained as a result of a reactive spark plasma sintering of a mixture of titanium and nanostructured (Ti,Mo)C-type carbide in a carbon shell. Composites with different ceramic addition mass percentage (10 and 20 wt %) were produced. Effect of content of elemental carbon covering nc-(Ti,Mo)C reinforcing phase particles on the microstructure, mechanical, tribological, and corrosion properties of the titanium-based composites was investigated. The microstructural evolution, mechanical properties, and tribological behavior of the Ti + (Ti,Mo)C/C composites were evaluated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), electron backscatter diffraction analysis (EBSD), X-ray photoelectron spectroscopy (XPS), 3D confocal laser scanning microscopy, nanoindentation, and ball-on-disk wear test. Moreover, corrosion resistance in a 3.5 wt % NaCl solution at RT were also investigated. It was found that the carbon content affected the tested properties. With the increase of carbon content from ca. 3 to 40 wt % in the (Ti,Mo)C/C reinforcing phase, an increase in the Young's modulus, hardness, and fracture toughness of spark plasma sintered composites was observed. The results of abrasive and corrosive resistance tests were presented and compared with experimental data obtained for cp-Ti and Ti-6Al-4V alloy without the reinforcing phase. Moreover, it was found that an increase in the percentage of carbon increased the resistance to abrasive wear and to electrochemical corrosion of composites, measured by the relatively lower values of the friction coefficient and volume of wear and higher values of resistance polarization. This resistance results from the fact that a stable of TiO2 layer doped with MoO3 is formed on the surface of the composites. The results of experimental studies on the composites were compared with those obtained for cp-Ti and Ti-6Al-4V alloy without the reinforcing phase.

12.
Materials (Basel) ; 13(17)2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32878109

RESUMO

Coatings enriched with zinc and copper as well as calcium or magnesium, fabricated on titanium substrate by Plasma Electrolytic Oxidation (PEO) under AC conditions (two cathodic voltages, i.e., -35 or -135 V, and anodic voltage of +400 V), were investigated. In all experiments, the electrolytes were based on concentrated orthophosphoric acid (85 wt%) and zinc, copper, calcium and/or magnesium nitrates. It was found that the introduced calcium and magnesium were in the ranges 5.0-5.4 at% and 5.6-6.5 at%, respectively, while the zinc and copper amounts were in the range of 0.3-0.6 at%. Additionally, it was noted that the metals of the block S (Ca and Mg) could be incorporated into the structure about 13 times more than metals of the transition group (Zn and Cu). The incorporated metals (from the electrolyte) into the top-layer of PEO phosphate coatings were on their first (Cu+) or second (Cu2+, Ca2+ and Mg2+) oxidation states. The crystalline phases (TiO and Ti3O) were detected only in coatings fabricated at cathodic voltage of -135 V. It has also been pointed that fabricated porous calcium-phosphate coatings enriched with biocompatible magnesium as well as with antibacterial zinc and copper are dedicated mainly to medical applications. However, their use for other applications (e.g., catalysis and photocatalysis) after additional functionalizations is not excluded.

13.
Materials (Basel) ; 13(15)2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32752187

RESUMO

In the present paper, the effect of different polishing methods (mechanical and electrochemical) on passive layer chemistry and the corrosion behavior of stainless steels is investigated. It was found that CrNiMo austenites have a substantially better corrosion behavior than CrMnN ones. The nickel is enriched underneath the passive layer, while manganese tends to be enriched in the passive layer. It was also noted that immersion of manganese into an electrolyte preferentially causes its dissolution. It was found that high amounts of chromium (27.4%), molybdenum (3.3%), nickel (29.4%), with the addition of manganese (2.8%) after mechanical grinding, generates a better corrosion resistance than after electrochemical polishing. This is most likely because of the introduction of phosphates and sulfates into its structure, which is known for steels with a high amount of manganese. For highly alloyed CrNiMo steels, which do not contain a high amount of manganese, the addition of phosphates and/or sulphates via the electropolishing process results in a decrease in pitting corrosion resistance, which is also observed for high manganese steels. Electropolished samples show detrimental corrosion properties when compared to mechanically polished samples. This is attributed to substantial amounts of sulfate and phosphate from the electropolishing electrolyte present in the surface of the passive layer.

14.
Mater Sci Eng C Mater Biol Appl ; 115: 111098, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32600702

RESUMO

This paper reports on the plasma electrolytic oxidation (PEO) of titanium alloy Ti-15Mo in baths containing zinc to obtain biomaterials with bacteriostatic and antibacterial properties. The Ti-15Mo surface was oxidised in a 0.1 M Ca(H2PO2)2 bath containing zinc compound particles: ZnO or Zn3(PO4)2. During the PEO process, the applied voltage was 300 V, and the current density was 150 mA∙cm-2. The surface morphology, roughness and wettability were determined. It has been noted that both roughness and wettability of Ti-15Mo alloy surface increased after PEO. EDX and XPS chemical composition analysis was carried out, and Raman spectroscopy was also performed indicating that Zn has been successfully incorporated into oxide layer. To investigate the antibacterial properties of the PEO oxide coatings, microbial tests were carried out. The bacterial adhesion test was performed using four different bacterial strains: reference Staphylococcus aureus (ATCC 25923), clinical Staphylococcus aureus (MRSA 1030), reference Staphylococcus epidermidis (ATCC 700296) and clinical Staphylococcus epidermidis (15560). Performed zinc-containing oxide coatings did not indicate the bacteria growth inducing effect. Additionally, the cytocompatibility of the formed oxide layers was characterised by MG-63 osteoblast-like live/dead tests. The surface bioactivity and cytocompatibility increased after the PEO process. The zinc was successfully incorporated into the titanium oxide layer. Based on the obtained results of the studies, it can be claimed that zinc-containing PEO layers can be an interesting course of bacteriostatic titanium biomaterials development.


Assuntos
Ligas/farmacologia , Antibacterianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Fosfatos/química , Compostos de Zinco/química , Óxido de Zinco/química , Ligas/química , Antibacterianos/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Osteoblastos/classificação , Osteoblastos/efeitos dos fármacos , Análise Espectral Raman , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/crescimento & desenvolvimento , Molhabilidade
15.
Materials (Basel) ; 13(11)2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32481746

RESUMO

This paper shows that the subject of porous coatings fabrication by Plasma Electrolytic Oxidation (PEO), known also as Micro Arc Oxidation (MAO), is still current, inter alia because metals and alloys, which can be treated by the PEO method, for example, titanium, niobium, tantalum and their alloys, are increasingly available for sale. On the international market, apart from scientific works/activity developed at universities, scientific research on the PEO coatings is also underway in companies such as Keronite (Great Britain), Magoxid-Coat (Germany), Mofratech (France), Machaon (Russia), as well as CeraFuse, Tagnite, Microplasmic (USA). In addition, it should be noted that the development of the space industry and implantology will force the production of trouble-free micro- and macro-machines with very high durability. Another aspect in favor of this technique is the rate of part treatment, which does not exceed several dozen minutes, and usually only lasts a few minutes. Another advantage is functionalization of fabricated surface through thermal or hydrothermal modification of fabricated coatings, or other methods (Physical vapor deposition (PVD), chemical vapor deposition (CVD), sol-gel), including also reoxidation by PEO treatment in another electrolyte. In the following chapters, coatings obtained both in aqueous solutions and electrolytes based on orthophosphoric acid will be presented; therein, dependent on the PEO treatment and the electrolyte used, they are characterized by different properties associated with their subsequent use. The possibilities for using coatings produced by means of plasma electrolytic oxidation are very wide, beginning from various types of catalysts, gas sensors, to biocompatible and antibacterial coatings, as well as hard wear coatings used in machine parts, among others, used in the aviation and aerospace industries.

16.
Materials (Basel) ; 13(6)2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32182998

RESUMO

The present paper covers the possible ways to fabricate advanced porous coatings that are enriched in copper on a titanium substrate through Direct Current Plasma Electrolytic Oxidation (DC-PEO) with voltage control, in electrolytes made of concentrated orthophosphoric acid with the addition of copper(II) nitrate(V) trihydrate. In these studies, solutions containing from 0 to 650 g salt per 1 dm3 of acid and anodic voltages from 450 V up to 650 V were used. The obtained coatings featuring variable porosity could be best defined by the three-dimensional (3D) parameter Sz, which lies in the range 9.72 to 45.18 µm. The use of copper(II) nitrate(V) trihydrate in the electrolyte, resulted, for all cases, in the incorporation of the two oxidation forms, i.e., Cu+ and Cu2+ into the coatings. Detailed X-Ray Photoelectron Spectroscopy (XPS) studies layers allowed for stating that the percentage of copper in the surface layer of the obtained coatings was in the range of 0.24 at% to 2.59 at%. The X-Ray Diffraction (XRD) studies showed the presence of copper (α-Cu2P2O7, and Cu3(PO4)2) and titanium (TiO2-anatase, TiO3, TiP2O7, and Ti0.73O0.91) compounds in coatings. From Energy-Dispersive X-Ray Spectroscopy (EDS) and XPS studies, it was found that the Cu/P ratio increases with the increase of voltage and the amount of salt in the electrolyte. The depth profile analysis by Glow-Discharge Optical Emission Spectroscopy (GDOES) method showed that a three-layer model consisting of a top porous layer, a semi-porous layer, and a transient/barrier layer might describe the fabricated coatings.

17.
Materials (Basel) ; 13(4)2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059415

RESUMO

To fabricate porous copper coatings on titanium, we used the process of plasma electrolytic oxidation (PEO) with voltage control. For all experiments, the three-phase step-up transformer with six-diode Graetz bridge was used. The voltage and the amount of salt used in the electrolyte were determined so as to obtain porous coatings. Within the framework of this study, the PEO process was carried out at a voltage of 450 VRMS in four electrolytes containing the salt as copper(II) nitrate(V) trihydrate. Moreover, we showed that the content of salt in the electrolyte needed to obtain a porous PEO coating was in the range 300-600 g/dm3. After exceeding this amount of salts in the electrolyte, some inclusions on the sample surface were observed. It is worth noting that this limitation of the amount of salts in the electrolyte was not connected with the maximum solubility of copper(II) nitrate(V) trihydrate in the concentrated (85%) orthophosphoric acid. To characterize the obtained coatings, numerous techniques were used. In this work, we used scanning electron microscopy (SEM) coupled with electron-dispersive X-ray spectroscopy (EDS), conducted surface analysis using confocal laser scanning microscopy (CLSM), and studied the surface layer chemical composition of the obtained coatings by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), glow discharge of optical emission spectroscopy (GDOES), and biological tests. It was found that the higher the concentration of Cu(NO3)2∙3H2O in the electrolyte, the higher the roughness of the coatings, which may be described by 3D roughness parameters, such as Sa (1.17-1.90 µm) and Sp (7.62-13.91 µm). The thicknesses of PEO coatings obtained in the electrolyte with 300-600 g/dm3 Cu(NO3) 2∙3H2O were in the range 7.8 to 10 µm. The Cu/P ratio of the whole volume of coating measured by EDS was in the range 0.05-0.12, while the range for the top layer (measured using XPS) was 0.17-0.24. The atomic concentration of copper (0.54-0.72 at%) resulted in antibacterial and fungicidal properties in the fabricated coatings, which can be dedicated to biocompatible applications.

18.
Micromachines (Basel) ; 11(2)2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31973056

RESUMO

The development of modern jet engines would not be possible without dynamically developed nickel-chromium-based superalloys, such as INCONEL® The effective abrasive machining of above materials brings with it many problems and challenges, such as intensive clogging of the grinding wheel active surface (GWAS). This extremely unfavorable effect causes a reduction in the cutting ability of the abrasive tool as well as increase to grinding forces and friction in the whole process. The authors of this work demonstrate that introduction of a synthetic organosilicon polymer-based impregnating substance to the GWAS can significantly improve the effects of carrying out the abrasive process of hard-to-cut materials. Experimental studies were carried out on a set of a silicon-treated small-sized sol-gel alumina 1-35×10×10-SG/F46G10VTO grinding wheels. The set contained abrasive tools after the internal cylindrical grinding process of INCONEL® alloy 600 rings and reference abrasive tools. The condition of the GWAS after the impregnation process was studied, including imaging and measurements of its microgeometry using confocal laser scanning microscopy (CLSM), microanalysis of its elemental distribution using energy dispersive X-Ray fluorescence (EDXRF), and the influence of impregnation process on the grinding temperature using infrared thermography (IRT). The obtained results confirmed the correctness of introduction of the impregnating substance into the grinding wheel structure, and it was possible to obtain an abrasive tool with a recommended characteristic. The main favorable features of treated grinding wheel concerning the reduction of adhesion between the GWAS and grinding process products (limitation of the clogging phenomenon) as well as reduction of friction in the grinding process, which has a positive effect on the thermal conditions in the grinding zone.

19.
Micromachines (Basel) ; 9(7)2018 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-30424265

RESUMO

Coatings with developed surface stereometry, being based on a porous system, may be obtained by plasma electrolytic oxidation, PEO (micro arc oxidation, MAO). In this paper, we present novel porous coatings, which may be used, e.g., in micromachine's biocompatible sensors' housing, obtained in electrolytes containing magnesium nitrate hexahydrate Mg(NO3)2·6H2O and/or zinc nitrate hexahydrate Zn(NO3)2·6H2O in concentrated phosphoric acid H3PO4 (85% w/w). Complementary techniques are used for coatings' surface characterization, such as scanning electron microscopy (SEM), for surface imaging as well as for chemical semi-quantitative analysis via energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), glow discharge optical emission spectroscopy (GDOES), and X-ray powder diffraction (XRD). The results have shown that increasing contents of salts (here, 250 g/L Mg(NO3)2·6H2O and 250 g/L Zn(NO3)2·6H2O) in electrolyte result in increasing of Mg/P and Zn/P ratios, as well as coating thickness. It was also found that by increasing the PEO voltage, the Zn/P and Mg/P ratios increase as well. In addition, the analysis of XPS spectra revealed the existence in 10 nm top of coating magnesium (Mg2+), zinc (Zn2+), titanium (Ti4+), and phosphorus compounds (PO43-, or HPO42-, or H2PO4-, or P2O74-).

20.
Materials (Basel) ; 11(9)2018 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-30208598

RESUMO

In this paper, the characteristics of new porous coatings fabricated at three voltages in electrolytes based on H3PO4 with calcium nitrate tetrahydrate, magnesium nitrate hexahydrate, and copper(II) nitrate trihydrate are presented. The SEM, energy dispersive spectroscopy (EDS), glow discharge optical emission spectroscopy (GDOES), X-ray photoelectron spectroscopy (XPS), and XRD techniques for coating identification were used. It was found that the higher the plasma electrolytic oxidation (PEO) (micro arc oxidation (MAO)) voltage, the thicker the porous coating with higher amounts of built-in elements coming from the electrolyte and more amorphous phase with signals from crystalline Ca(H2PO4)2∙H2O and/or Ti(HPO4)2∙H2O. Additionally, the external parts of the obtained porous coatings formed on titanium consisted mainly of Ti4+, Ca2+, Mg2+ and PO43-, HPO42-, H2PO4-, P2O74- as well as Zn2+ or copper Cu⁺/Cu2+. The surface should be characterized by high biocompatibility, due to the presence of structures based on calcium and phosphates, and have bactericidal properties, due to the presence of zinc and copper ions. Furthermore, the addition of magnesium ions should accelerate the healing of postoperative wounds, which could lead to faster patient recovery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...