Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36363233

RESUMO

Composite silica-titania waveguide films of refractive index ca. 1.8 are fabricated on glass substrates using a sol-gel method and dip-coating technique. Tetraethyl orthosilicate and tetraethyl orthotitanate with molar ratio 1:1 are precursors. Fabricated waveguides are annealed at 500 °C for 60 min. Their optical properties are studied using ellipsometry and UV-Vis spectrophotometry. Optical losses are determined using the streak method. The material structure and chemical composition, of the silica-titania films are analyzed using transmission electron microscopy (TEM) and electron dispersive spectroscopy (EDS), respectively. The surface morphology was investigated using atomic force microscopy (AFM) and scanning electron microscopy (SEM) methods. The results presented in this work show that the waveguide films are amorphous, and their parameters are stable for over a 13 years. The optical losses depend on their thickness and light polarization. Their lowest values are less than 0.06 dB cm-1. The paper presents the results of theoretical analysis of scattering losses on nanocrystals and pores in the bulk and interfaces of the waveguide film. These results combined with experimental data clearly indicate that light scattering at the interface to a glass substrate is the main source of optical losses. Presented waveguide films are suitable for application in evanescent wave sensors.

2.
Langmuir ; 35(37): 11968-11978, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31442379

RESUMO

Planar photonic components can be fabricated with high resolution by electron beam patterning of polymer thin films on solid substrates such as silicon and glass. However, polymer films are normally formed by spin-coating lithographic resists containing not only polymers but also volatile solvents, which is a serious environmental and health issue. Therefore, we investigate a new type of material for planar structure fabrication (i.e., room-temperature ionic liquids (RTILs) with a polymerizable allyl group) that is electron-beam-curable, solvent-free, and thus potentially interesting for processing materials with weak resistance to solvents. We fabricate planar polymer microstructures by electron beam patterning of RTIL thin films in vacuum, which is possible because of the negligible volatility of ionic liquids. Three different polymerizable ionic liquids {i.e., [Allmim][Cl] (1-allyl-3-methylimidazolium chloride), [Allmim][NTf2] (1-allyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide), and [Allmmim][NTf2] (1-allyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide)} are compared in terms of the quality of the fabricated microstructures. We demonstrate that the shape of the more viscous RTIL with the Cl- anion is less distorted during electron-beam-activated polymerization than the shape of the less viscous RTILs with a large NTf2- anion. Furthermore, the surface tension of the NTf2-based ionic liquid decreases significantly with temperature as compared to that of the Cl-based ionic liquid. Thus, we suggest that the thermocapillary effect, that is, the Marangoni flow caused by a temperature gradient, might be responsible for the differences in the shape of the RTIL-derived microstructures. Also, we analyze the chemistry of the electron-beam-activated polymerization of RTIL by the use of Fourier-transform infrared spectroscopy (FTIR) and conclude that because of the disappearance of C═C bonds the free radical polymerization is a probable reaction mechanism. Finally, we show that polymerized microstructures are potentially attractive as planar photonic components because of good optical properties such as a high refractive index.

3.
Nanotechnology ; 29(47): 475202, 2018 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-30198858

RESUMO

Electron beam patterning is an important technology in the fabrication of miniaturized photonic devices. The fabrication process conventionally involves the use of radiation sensitive polymer-based solutions (called resists). We propose to replace typical polymer resists with eco-friendly solvent-free room temperature ionic liquids (RTILs), which are polymerized in situ and solidified by an electron beam. It is demonstrated that the shapes of polymerized structures are different for high-viscous Cl-based RTILs and low-viscous NTf2-based RTILs. Due to the the satisfactory quality of the polymerized spatial microstructures and their light transmission properties, the RTIL-derived microstructures are potentially attractive as photonic elements for near-infrared.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...