Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 24(1): 69, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849882

RESUMO

BACKGROUND: Information provided by high-throughput sequencing platforms allows the collection of content-rich data about biological sequences and their context. Sequence alignment is a bioinformatics approach to identifying regions of similarity in DNA, RNA, or protein sequences. However, there is no consensus about the specific common terminology and representation for sequence alignments. Thus, automatically linking the wide existing knowledge about the sequences with the alignments is challenging. RESULTS: The Sequence Alignment Ontology (SALON) defines a helpful vocabulary for representing and semantically annotating pairwise and multiple sequence alignments. SALON is an OWL 2 ontology that supports automated reasoning for alignments validation and retrieving complementary information from public databases under the Open Linked Data approach. This will reduce the effort needed by scientists to interpret the sequence alignment results. CONCLUSIONS: SALON defines a full range of controlled terminology in the domain of sequence alignments. It can be used as a mediated schema to integrate data from different sources and validate acquired knowledge.


Assuntos
Biologia Computacional , Alinhamento de Sequência , Sequência de Aminoácidos , Consenso , Bases de Dados Factuais
2.
Biochim Biophys Acta Gene Regul Mech ; 1864(11-12): 194766, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34710644

RESUMO

Gene regulation computational research requires handling and integrating large amounts of heterogeneous data. The Gene Ontology has demonstrated that ontologies play a fundamental role in biological data interoperability and integration. Ontologies help to express data and knowledge in a machine processable way, which enables complex querying and advanced exploitation of distributed data. Contributing to improve data interoperability in gene regulation is a major objective of the GREEKC Consortium, which aims to develop a standardized gene regulation knowledge commons. GREEKC proposes the use of ontologies and semantic tools for developing interoperable gene regulation knowledge models, which should support data annotation. In this work, we study how such knowledge models can be generated from cartoons of gene regulation scenarios. The proposed method consists of generating descriptions in natural language of the cartoons; extracting the entities from the texts; finding those entities in existing ontologies to reuse as much content as possible, especially from well known and maintained ontologies such as the Gene Ontology, the Sequence Ontology, the Relations Ontology and ChEBI; and implementation of the knowledge models. The models have been implemented using Protégé, a general ontology editor, and Noctua, the tool developed by the Gene Ontology Consortium for the development of causal activity models to capture more comprehensive annotations of genes and link their activities in a causal framework for Gene Ontology Annotations. We applied the method to two gene regulation scenarios and illustrate how to apply the models generated to support the annotation of data from research articles.


Assuntos
Regulação da Expressão Gênica , Modelos Genéticos , Curadoria de Dados , Ontologia Genética , Anotação de Sequência Molecular
3.
J Biomed Semantics ; 7(1): 62, 2016 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-27737720

RESUMO

BACKGROUND: Systematized Nomenclature of Medicine - Clinical Terms (SNOMED CT) has been designed as standard clinical terminology for annotating Electronic Health Records (EHRs). EHRs textual information is used to classify patients' diseases into an International Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10-CM) category (usually by an expert). Improving the accuracy of classification is the main purpose of using ontologies and OWL representations at the core of classification systems. In the last few years some ontologies and OWL representations for representing ICD-10-CM categories have been developed. However, they were not designed to be the basis for an automatic classification tool nor do they model ICD-10-CM inclusion terms as Web Ontology Language (OWL) axioms, which enables automatic classification. In this context we have developed Dione, an OWL representation of ICD-10-CM. RESULTS: Dione is the first OWL representation of ICD-10-CM, which is logically consistent, whose axioms define the ICD-10-CM inclusion terms by means of a methodology based on SNOMED CT/ICD-10-CM mappings. The ICD-10-CM exclusions are handled with these mappings. Dione currently contains 391,669 classes, 391,720 entity annotation axioms and 11,795 owl:equivalentClass axioms which have been constructed using 104,646 relationships extracted from the SNOMED CT/ICD-10-CM and BioPortal mappings included in Dione using the owl:intersectionOf and the owl:someValuesFrom statements. The resulting OWL representation has been classified and its consistency tested with the ELK reasoner. We have also taken three clinical records from the Virgen de la Victoria Hospital (Málaga, Spain) which have been manually annotated using SNOMED CT. These annotations have been included as instances to be classified by the reasoner. The classified instances show that Dione could be a promising ICD-10-CM OWL representation to support the classification of patients' diseases. CONCLUSIONS: Dione is a first step towards the automatic classification of patients' diseases by using SNOMED CT annotations embedded in Electronic Health Records (EHRs). The purpose of Dione is to standardise and formalise a medical terminology, thereby enabling new kinds of tools and new sets of functionalities to be developed. This in turn assists health specialists by providing classified information from EHRs and enables the automatic annotation of patients' diseases with ICD-10-CM codes.


Assuntos
Ontologias Biológicas , Doença/classificação , Humanos , Internet
4.
BMC Bioinformatics ; 10 Suppl 10: S5, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19796402

RESUMO

BACKGROUND: The analysis of information in the biological domain is usually focused on the analysis of data from single on-line data sources. Unfortunately, studying a biological process requires having access to disperse, heterogeneous, autonomous data sources. In this context, an analysis of the information is not possible without the integration of such data. METHODS: KA-SB is a querying and analysis system for final users based on combining a data integration solution with a reasoner. Thus, the tool has been created with a process divided into two steps: 1) KOMF, the Khaos Ontology-based Mediator Framework, is used to retrieve information from heterogeneous and distributed databases; 2) the integrated information is crystallized in a (persistent and high performance) reasoner (DBOWL). This information could be further analyzed later (by means of querying and reasoning). RESULTS: In this paper we present a novel system that combines the use of a mediation system with the reasoning capabilities of a large scale reasoner to provide a way of finding new knowledge and of analyzing the integrated information from different databases, which is retrieved as a set of ontology instances. This tool uses a graphical query interface to build user queries easily, which shows a graphical representation of the ontology and allows users o build queries by clicking on the ontology concepts. CONCLUSION: These kinds of systems (based on KOMF) will provide users with very large amounts of information (interpreted as ontology instances once retrieved), which cannot be managed using traditional main memory-based reasoners. We propose a process for creating persistent and scalable knowledgebases from sets of OWL instances obtained by integrating heterogeneous data sources with KOMF. This process has been applied to develop a demo tool http://khaos.uma.es/KA-SB, which uses the BioPax Level 3 ontology as the integration schema, and integrates UNIPROT, KEGG, CHEBI, BRENDA and SABIORK databases.


Assuntos
Biologia Computacional/métodos , Armazenamento e Recuperação da Informação/métodos , Software , Sistemas de Gerenciamento de Base de Dados , Bases de Dados Factuais , Internet
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...