Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(4)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38675132

RESUMO

NDH-4338 is a highly lipophilic prodrug comprising indomethacin and an acetylcholinesterase inhibitor. A design of experiments approach was used to synthesize, characterize, and evaluate the wound healing efficacy of optimized NDH-4338 nanosuspensions against nitrogen mustard-induced skin injury. Nanosuspensions were prepared by sonoprecipitation in the presence of a Vitamin E TPGS aqueous stabilizer solution. Critical processing parameters and material attributes were optimized to reduce particle size and determine the effect on dissolution rate and burn healing efficacy. The antisolvent/solvent ratio (A/S), dose concentration (DC), and drug/stabilizer ratio (D/S) were the critical sonoprecipitation factors that control particle size. These factors were subjected to a Box-Behnken design and response surface analysis, and model quality was assessed. Maximize desirability and simulation experiment optimization approaches were used to determine nanosuspension parameters with the smallest size and the lowest defect rate within the 10-50 nm specification limits. Optimized and unoptimized nanosuspensions were prepared and characterized. An established depilatory double-disc mouse model was used to evaluate the healing of nitrogen mustard-induced dermal injuries. Optimized nanosuspensions (A/S = 6.2, DC = 2% w/v, D/S = 2.8) achieved a particle size of 31.46 nm with a narrow size range (PDI = 0.110) and a reduced defect rate (42.2 to 6.1%). The optimized nanosuspensions were stable and re-dispersible, and they showed a ~45% increase in cumulative drug release and significant edema reduction in mice. Optimized NDH-4338 nanosuspensions were smaller with more uniform sizes that led to improved physical stability, faster dissolution, and enhanced burn healing efficacy compared to unoptimized nanosuspensions.

2.
Animal Model Exp Med ; 6(1): 57-65, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36872306

RESUMO

BACKGROUND: Sulfur mustard (SM) is a chemical warfare vesicant that severely injures exposed eyes, lungs, and skin. Mechlorethamine hydrochloride (NM) is widely used as an SM surrogate. This study aimed to develop a depilatory double-disc (DDD) NM skin burn model for investigating vesicant pharmacotherapy countermeasures. METHODS: Hair removal method (clipping only versus clipping followed by a depilatory), the effect of acetone in the vesicant administration vehicle, NM dose (0.5-20 µmol), vehicle volume (5-20 µl), and time course (0.5-21 days) were investigated using male and female CD-1 mice. Edema, an indicator of burn response, was assessed by biopsy skin weight. The ideal NM dose to induce partial-thickness burns was assessed by edema and histopathologic evaluation. The optimized DDD model was validated using an established reagent, NDH-4338, a cyclooxygenase, inducible nitric oxide synthase, and acetylcholinesterase inhibitor prodrug. RESULTS: Clipping/depilatory resulted in a 5-fold higher skin edematous response and was highly reproducible (18-fold lower %CV) compared to clipping alone. Acetone did not affect edema formation. Peak edema occurred 24-48 h after NM administration using optimized dosing methods and volume. Ideal partial-thickness burns were achieved with 5 µmol of NM and responded to treatment with NDH-4338. No differences in burn edematous responses were observed between males and females. CONCLUSION: A highly reproducible and sensitive partial-thickness skin burn model was developed for assessing vesicant pharmacotherapy countermeasures. This model provides clinically relevant wound severity and eliminates the need for organic solvents that induce changes to the skin barrier function.


Assuntos
Acetona , Irritantes , Feminino , Masculino , Animais , Camundongos , Acetilcolinesterase , Mecloretamina , Pele , Modelos Animais de Doenças
3.
Antioxidants (Basel) ; 10(5)2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-34063003

RESUMO

The study aims to develop high drug-loaded (about 15% lipid matrix) curcumin solid lipid nanoparticles (CSLNs) for wound healing. CSLNs prepared by hot, high-pressure homogenization, without using organic solvents, were optimized using the Taguchi design followed by the central composite design. The optimized CSLNs exhibited a high assay/drug content (0.6% w/w), solubility (6 × 105 times), and EE (75%) with a particle size < 200 nm (PDI-0.143). The CSLNs were safe (in vitro and in vivo), photostable, autoclavable, stable up to one year at 30 °C and under refrigeration and exhibited a controlled release (zero-order; 5 days). XRD, FTIR, and DSC confirmed solubilization and entrapment of the curcumin within the SLNs. TEM and FESEM revealed a smooth and spherical shape. The CSLNs showed a significant antimicrobial effect (MIC of 64 µg/mL for planktonic cells; 512 µg/mL for biofilm formation; and 2 mg/mL for mature biofilm) against Staphylococcus aureus 9144, while free curcumin dispersion did not exhibit any effect. This is the first report on the disruption of mature biofilms by curcumin solid lipid nanoparticles (CSLNs). The cell proliferation potential of CSLNs was also evaluated in vitro while the wound healing potential of CSLNs (incorporated in a hydrogel) was assessed in vivo. In (i) nitrogen mustard gas and (ii) a full-thickness excision wound model, CSLNs exhibited (a) significantly faster wound closure, (b) histologically and immunohistochemically better healing, (c) lower oxidative stress (LPO) and (d) inflammation (TNFα), and (e) increased angiogenesis (VEGF) and antioxidant enzymes, i.e., catalase and GSH levels. CSLNs thus offer a promising modern wound therapy especially for infected wounds, considering their effects in mature biofilm disruption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...