Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 12: 795217, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34966375

RESUMO

Among chronic skin autoinflammatory diseases, Hidradenitis Suppurativa (HS) stands out for its chronicity, highly variable condition, and profound impact on the patients' quality of life. HS is characterized by suppurative skin lesions in diverse body areas, including deep-seated painful nodules, abscesses, draining sinus, and bridged scars, among others, with typical topography. To date, HS is considered a refractory disease and medical treatments aim to reduce the incidence, the infection, and the pain of the lesions. For this purpose, different classes of drugs, including anti-inflammatory molecules, antibiotics and biological drugs are being used. Antimicrobial peptides (AMPs), also called defense peptides, emerge as a new class of therapeutic compounds, with broad-spectrum antimicrobial action, in addition to reports on their anti-inflammatory, healing, and immunomodulating activity. Such peptides are present in prokaryotes and eukaryotes, as part of the innate eukaryotic immune system. It has been proposed that a deregulation in the expression of AMPs in human epithelial tissues of HS patients may be associated with the etiology of this skin disease. In this scenario, plant AMPs stand out for their richness, diversity of types, and broad antimicrobial effects, with potential application for topical systemic use in patients affected by HS.

2.
Antibiotics (Basel) ; 10(11)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34827219

RESUMO

Lipid transfer proteins (LTPs) are among the most promising plant-exclusive antimicrobial peptides (AMPs). They figure among the most challenging AMPs from the point of view of their structural diversity, functions and biotechnological applications. This review presents a current picture of the LTP research, addressing not only their structural, evolutionary and further predicted functional aspects. Traditionally, LTPs have been identified by their direct isolation by biochemical techniques, whereas omics data and bioinformatics deserve special attention for their potential to bring new insights. In this context, new possible functions have been identified revealing that LTPs are actually multipurpose, with many additional predicted roles. Despite some challenges due to the toxicity and allergenicity of LTPs, a systematic review and search in patent databases, indicate promising perspectives for the biotechnological use of LTPs in human health and also plant defense.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...