Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 8(11): 5575-5585, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29938075

RESUMO

Mutations create novel genetic variants, but their contribution to variation in fitness and other phenotypes may depend on environmental conditions. Furthermore, natural environments may be highly heterogeneous. We assessed phenotypes associated with survival and reproductive success in over 30,000 plants representing 100 mutation accumulation lines of Arabidopsis thaliana across four temporal environments at a single field site. In each of the four assays, environmental variance was substantially larger than mutational variance. For some traits, whether mutational variance was significantly varied between seasons. The founder genotype had mean trait values near the mean of the distribution of the mutation accumulation lines in all field experiments. New mutations also contributed more phenotypic variation than would be predicted, given phenotypic and sequence-level divergence among natural populations of A. thaliana. The combination of large environmental variance with a mean effect of mutation near zero suggests that mutations could contribute substantially to standing genetic variation.

2.
Evolution ; 70(5): 1039-50, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27061194

RESUMO

As the ultimate source of genetic diversity, spontaneous mutation is critical to the evolutionary process. The fitness effects of spontaneous mutations are almost always studied under controlled laboratory conditions rather than under the evolutionarily relevant conditions of the field. Of particular interest is the conditionality of new mutations-that is, is a new mutation harmful regardless of the environment in which it is found? In other words, what is the extent of genotype-environment interaction for spontaneous mutations? We studied the fitness effects of 25 generations of accumulated spontaneous mutations in Arabidopsis thaliana in two geographically widely separated field environments, in Michigan and Virginia. At both sites, mean total fitness of mutation accumulation lines exceeded that of the ancestors, contrary to the expected decrease in the mean due to new mutations but in accord with prior work on these MA lines. We observed genotype-environment interactions in the fitness effects of new mutations, such that the effects of mutations in Michigan were a poor predictor of their effects in Virginia and vice versa. In particular, mutational variance for fitness was much larger in Virginia compared to Michigan. This strong genotype-environment interaction would increase the amount of genetic variation maintained by mutation-selection balance.


Assuntos
Arabidopsis/genética , Interação Gene-Ambiente , Aptidão Genética , Acúmulo de Mutações , Variação Genética , Genótipo , Seleção Genética
3.
Evolution ; 66(7): 2335-9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22759306

RESUMO

Despite the fundamental importance of mutation to the evolutionary process, we have little knowledge of the direct consequences of specific spontaneous mutations to the fitness of the organism. Combining results of whole-genome sequencing with repeated field assays of survival and reproduction, we quantify the combined effects on fitness of spontaneous mutations identified in Arabidopsis thaliana. We demonstrate that the effects are beneficial, deleterious, or neutral depending on the environmental context. Some lines, bearing mutations disrupting known loci, differ strongly in fitness from the founder or premutation genotype. Those effects vary across environments, for example, a line with a major deletion spanning a transcription factor gene expressed lower fitness than the founder under most conditions but exceeded the founder's fitness in one environment. The large contribution of genotype by environment interaction (G × E) to mutation effects on fitness implies spatial and/or temporal variation in selection on new mutations and could contribute to the maintenance of standing genetic variation.


Assuntos
Arabidopsis/genética , Meio Ambiente , Aptidão Genética , Mutação , Variação Genética , Longevidade , Fenótipo , Reprodução , Estações do Ano , Seleção Genética
4.
Evolution ; 62(5): 1066-75, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18298643

RESUMO

Spontaneous deleterious mutation has been measured in a handful of organisms, always under laboratory conditions and usually employing inbred species or genotypes. We report the results of a mutation accumulation experiment with an outbred annual plant, Raphanus raphanistrum, with lifetime fitness measured in both the field and the greenhouse. This is the first study to report the effects of spontaneous mutation measured under field conditions. Two large replicate populations (N(e) approximately 600) were maintained with random mating in the greenhouse under relaxed selection for nine generations before the field assay was performed and ten generations before the greenhouse assay. Each generation, every individual was mated twice, once as a pollen donor and once as a pollen recipient, and a single seed from each plant was chosen randomly to create the next generation. The ancestral population was maintained as seeds at 4 degrees C. Declines in lifetime fitness were observed in both the field (1.7% per generation; P= 0.27) and the greenhouse (0.6% per generation; P= 0.07). Significant increases in additive genetic variance for fitness were found for stems per day, flowers per stem, fruits per flower and seeds per fruit in the field as well as for fruits per flower in the greenhouse. Lack of significance of the fitness decline may be due to the short period of mutation accumulation, the use of outbred populations, or both. The percent declines in fitness are at the high end of the range observed in other mutation accumulation experiments and give some support to the idea that mutational effects may be magnified under harsher field conditions. Thus, measurement of mutational parameters under laboratory conditions may underestimate the effects of mutations in natural populations.


Assuntos
Meio Ambiente , Mutação/genética , Raphanus/genética , Raphanus/fisiologia , Cruzamento , Ambiente Controlado , Fertilidade/genética , Fertilidade/fisiologia , Variação Genética , Raphanus/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...