Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 13(11): e10690, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38020689

RESUMO

Crop domestication has led to the development of distinct trait syndromes, a series of constrained plant trait trade-offs to maximize yield in high-input agricultural environments, and potentially constrained trait plasticity. Yet, with the ongoing transition to organic and diversified agroecosystems, which create more heterogeneous nutrient availability, this constrained plasticity, especially in root functional traits, may be undesirable for nutrient acquisition. Such agricultural systems require a nuanced understanding of the soil-crop continuum under organic amendments and with intercropping, and the role crop genetic resources play in governing nutrient management and design. In this study, we use a functional traits lens to determine if crops with a range of domestication histories express different functional trait plasticity and how this expression changes with soil amendments and intercropping. We utilize a common garden experiment including five wheat (Triticum aestivum) varietals with a range of domestication histories planted in a factorial combination with amendment type (organic and inorganic) and cropping design (monoculture or intercropped with soybean). We use bivariate, multivariate and trait space analyses to quantify trait variation and plasticity in five leaf and five root functional traits. Almost all leaf and root traits varied among varieties. Yet, amendment type was nearly inconsequential for explaining trait expression across varieties. However, intercropping was linked to significant differences in root acquisitive strategies, regardless of the varietals' distinct history. Our findings show substantial leaf and root trait plasticity, with roots expressing greater trait space occupation with domestication, but also the strong role of management in crop trait expression. We underscore the utility of a functional trait-based approach to understand plant-soil dynamics with organic amendments, as well as the role of crop genetic histories in the successful transition to low-input and diversified agroecosystems.

2.
New Phytol ; 235(3): 1018-1031, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35510804

RESUMO

The extent of intraspecific variation in trait-environment relationships is an open question with limited empirical support in crops. In organic agriculture, with high environmental heterogeneity, this knowledge could guide breeding programs to optimize crop attributes. We propose a three-dimensional framework involving crop performance, crop traits, and environmental axes to uncover the multidimensionality of trait-environment relationships within a crop. We modeled instantaneous photosynthesis (Asat ) and water-use efficiency (WUE) as functions of four phenotypic traits, three soil variables, five carrot (Daucus carota) varieties, and their interactions in a national participatory plant breeding program involving a suite of farms across Canada. We used these interactions to describe the resulting 12 trait-environment relationships across varieties. We found one significant trait-environment relationship for Asat (taproot tissue density-soil phosphorus), which was consistent across varieties. For WUE, we found that three relationships (petiole diameter-soil nitrogen, petiole diameter-soil phosphorus, and leaf area-soil phosphorus) varied significantly across varieties. As a result, WUE was maximized by different combinations of trait values and soil conditions depending on the variety. Our three-dimensional framework supports the identification of functional traits behind the differential responses of crop varieties to environmental variation and thus guides breeding programs to optimize crop attributes from an eco-evolutionary perspective.


Assuntos
Agricultura Orgânica , Melhoramento Vegetal , Fenótipo , Fósforo , Folhas de Planta , Solo , Água
3.
Ecology ; 98(3): 668-677, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28036095

RESUMO

How plant functional traits (e.g., seed mass) drive species abundance within communities remains an unsolved question. Borrowing concepts from natural selection theory, we propose that trait-abundance relationships can generally correspond to one of three modes of trait selection: directional (a rectilinear relationship, where species at one end of a trait axis are most abundant), stabilizing (an n-shaped relationship), and disruptive (a u-shaped relationship). Stabilizing selection (i.e., the functional convergence of abundant species) would result from positive density-dependent interactions (e.g., facilitation) or due to generalized trade-offs in resource acquisition/use, while disruptive selection (i.e., the divergence of abundant species) would result from negative density-dependent interactions (e.g., competition) or due to environmental heterogeneity. These selection modes can be interpreted as proxies for community-level trait-fitness functions, which establish the degree to which traits are truly "functional". We searched for selection modes in a desert annual-plant community in Argentina (which was divided into winter and summer guilds) to test the hypothesis that the relative importance of disruptive mechanisms (competition, disturbances) decreases with the increase of abiotic stress, a stabilizing agent. Average density was analyzed as a function of eight traits generally linked to resource acquisition and competitive ability (maximum plant height, leaf size, specific leaf area, specific root length), resource retention and stress tolerance (leaf dissection, leaf dry matter content, specific root volume), and regeneration (seed mass) using multiple quadratic-regression models. Trait selection was stabilizing and/or directional when the environment was harshest (winter) and disruptive and/or directional when conditions were milder (summer). Selection patterns differed between guilds for two important traits: plant height and seed mass. These results suggest that abiotic stress may drive within-community functional convergence independently of the trait considered, opposing the view that some traits may be inherently convergent while others divergent. Our quadratic model-based approach provides standardized metrics of both linear and nonlinear selection that may allow simple comparisons among communities subjected to contrasting environmental conditions. These concepts, rooted in natural selection theory, may clarify the functional link between traits and species abundance, and thus help untangle the contributions of deterministic and stochastic processes on community assembly.


Assuntos
Meio Ambiente , Fenótipo , Plantas/anatomia & histologia , Argentina , Folhas de Planta
4.
Oecologia ; 167(1): 141-8, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21384175

RESUMO

Woody plant encroachment of savanna ecosystems has been related to altered disturbance regimes, mainly fire suppression and herbivore exclusion. In contrast, neighbourhood interactions among resident and colonising woody species have received little attention, despite their likely influence on the pattern and rate of tree establishment. We examined how resident palm trees (Butia yatay) and established adults of two riparian forest tree species (Allophylus edulis and Sebastiania commersoniana) influenced seed arrival and seedling performance of the latter two species in a humid savanna of east-central Argentina. Seed traps and seedlings of both riparian species were placed in herbaceous openings, and beneath palm, conspecific and heterospecific adult trees in two unburned savanna patches, and were monitored for 2 years. Only seeds of the bird-dispersed Allophylus arrived in palm microsites, yet survival of Allophylus seedlings near adult palms was limited by animal damage through trampling and burrowing, a non-trophic mechanism of apparent competition. Seeds of both riparian species dispersed into conspecific microsites, although adult trees selectively reduced growth of conspecific seedlings, a pattern consistent with the "escape hypothesis". Further, survival of Sebastiania increased in the moister Allophylus microsites, suggesting a one-way facilitative interaction between woody colonisers. Our results indicate that dispersal facilitation by resident savanna trees may be critical to riparian species invasion after fire suppression. Distance-dependent effects of conspecific and heterospecific adult trees could contribute to shape the subsequent dynamics of woody seedling establishment. Overall, we show that indirect interactions can play a prominent role in savanna encroachment by non-resident woody species.


Assuntos
Arecaceae/fisiologia , Ecossistema , Plântula/fisiologia , Árvores/fisiologia , Argentina , Euphorbiaceae/fisiologia , Geografia , Rios , Sapindaceae/fisiologia , Dispersão de Sementes , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...