Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 15: 1379456, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560358

RESUMO

Introduction: Phytotherapeutics, particularly extracts from Sabal serrulata (saw palmetto) fruit or Urtica dioica (stinging nettle) root, are popular for the treatment of male lower urinary symptoms in many countries, but their mechanism of action is poorly understood. We performed in vivo and in vitro studies to obtain deeper insight into the mechanism of action of WS® 1541, a proprietary combination of a Sabal serrulata fruit and an Urtica dioica root extract (WS® 1473 and WS® 1031, respectively) and its components. Methods: We used the sulpiride model of benign prostatic hyperplasia in rats and tested three doses of WS® 1541 in comparison to finasteride, evaluating weight of prostate and its individual lobes as well as aspects of inflammation, oxidative stress, growth and hyperplasia. In human BPH-1 cells, we studied the effect of WS® 1473, WS® 1031, WS® 1541 and finasteride on apoptosis, cell cycle progression and migrative capacity of the cells. Results: WS® 1541 did not reduce prostate size in sulpiride treated rats but attenuated the sulpiride-induced changes in expression of most analyzed genes and of oxidized proteins and abrogated the epithelial thickening. In vitro, WS® 1473 and WS® 1031 showed distinct profiles of favorable effects in BPH-1 cells including anti-oxidative, anti-proliferative and pro-apoptotic effects, as well as inhibiting epithelial-mesenchymal-transition. Conclusion: This data supports a beneficial effect of the clinically used WS® 1541 for the treatment of lower urinary tract symptoms associated with mild to moderate benign prostate syndrome and provides a scientific rationale for the combination of its components WS® 1473 and WS® 1031.

2.
Brain Res ; 1043(1-2): 32-41, 2005 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-15862515

RESUMO

Excessive activation of non-NMDA receptors, AMPA and kainate, contributes to neuronal degeneration in acute and progressive pathologies, possibly including schizophrenia. Because 5-HT(1A) receptor agonists have neuroprotective properties (e.g., against NMDA-induced neurotoxicity), we compared the effects of the antipsychotics, clozapine, ziprasidone and aripiprazole, that are partial agonists at 5-HT(1A) receptor, with those of haloperidol, which is devoid of 5-HT(1A) agonist properties, on kainic acid (KA)-induced striatal lesion volumes, in C57Bl/6N mice. The involvement of 5-HT(1A) receptors was determined by antagonist studies with WAY100635, and data were compared with those obtained using the potent and high efficacy 5-HT(1A) receptor agonist, F13714. Intra-striatal KA lesioning and measurement of lesion volumes using cresyl violet staining were carried out at 48 h after surgery. F13714, antipsychotics or vehicle were administered ip twice, 30 min before and 3 1/2 h after KA injection. WAY100635 (0.63 mg/kg) or vehicle were given sc 30 min before each drug injection. Clozapine (2 x 10 mg/kg), ziprasidone (2 x 20 mg/kg) and aripiprazole (2 x 10 mg/kg) decreased lesion volume by 61%, 59% and 73%, respectively. WAY100635 antagonized the effect of ziprasidone and of aripiprazole but only slightly attenuated that of clozapine. In contrast, haloperidol (2 x 0.16 mg/kg) did not affect KA-induced lesion volume. F13714 dose-dependently decreased lesion volume. The 61% decrease of lesion volume obtained with F13714 (2 x 0.63 mg/kg) was antagonized by WAY100635. WAY100635 alone did not affect lesion volume. These results show that 5-HT(1A) receptor activation protects against KA-induced striatal lesions and indicate that some atypical antipsychotic agents with 5-HT(1A) agonist properties may protect against excitotoxic injury, in vivo.


Assuntos
Antipsicóticos/farmacologia , Clozapina/farmacologia , Corpo Estriado/efeitos dos fármacos , Agonistas de Aminoácidos Excitatórios/toxicidade , Ácido Caínico/toxicidade , Receptor 5-HT1A de Serotonina/fisiologia , Aminopiridinas/farmacologia , Animais , Aripiprazol , Corpo Estriado/patologia , Corpo Estriado/fisiologia , Modelos Animais de Doenças , Haloperidol/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Piperazinas/farmacologia , Piperidinas/farmacologia , Piridinas/farmacologia , Quinolonas/farmacologia , Esquizofrenia/tratamento farmacológico , Esquizofrenia/fisiopatologia , Agonistas do Receptor 5-HT1 de Serotonina , Antagonistas da Serotonina/farmacologia , Tiazóis/farmacologia
3.
Brain Res ; 996(1): 1-8, 2004 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-14670625

RESUMO

Overactivation of poly(ADP-ribose) polymerase (PARP) in response to genotoxic insults can cause cell death by energy deprivation. We previously reported that neurotoxic amounts of kainic acid (KA) injected into the rat striatum produce time-dependent changes in striatal PARP activity in vivo. Here, we have investigated the time-course of KA-induced toxicity and the effects of the PARP inhibitor benzamide on KA, AMPA and NMDA neurotoxicities in vivo, by measuring changes in the volume of the lesion and in NAD+ and ATP levels induced by the intra-striatal injection of these excitotoxins in C57Bl/6N mice. The KA-induced lesion volume was dependent on the amount of toxin injected and the survival time. The lesion was well developed at 48 h and was almost undetectable after one week. KA produced an extensive astrogliosis at one week. Benzamide partially prevented both KA- and NMDA- but not AMPA-induced lesions when measured at 48 h after the treatment. The effects of benzamide appeared to be in part related to changes in energy metabolism, since KA produced decreases in striatal levels of NAD+ and ATP that were partially prevented by benzamide at 48 h and which returned to control levels at one week. NMDA did not affect NAD+ and induced little alteration in ATP levels. Benzamide had no effect on AMPA-induced decreases in either NAD+ or ATP levels at 48 h. These results (1) indicate that PARP overactivation and energy depletion could be responsible in part for the cellular demise during the development of the lesion induced by KA; (2) confirm that PARP is involved in NMDA but not AMPA toxicities; (3) suggest the existence of differences between KA and AMPA-mediated toxicities; and (4) provide further evidence supporting PARP as a novel target for new drug treatments against neurodegenerative disorders.


Assuntos
Benzamidas/uso terapêutico , Lesões Encefálicas/prevenção & controle , Agonistas de Aminoácidos Excitatórios , Inibidores de Poli(ADP-Ribose) Polimerases , Trifosfato de Adenosina/metabolismo , Animais , Lesões Encefálicas/induzido quimicamente , Lesões Encefálicas/patologia , Cromatografia Líquida de Alta Pressão , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/lesões , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Proteína Glial Fibrilar Ácida/metabolismo , Imuno-Histoquímica/métodos , Ácido Caínico/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , N-Metilaspartato/antagonistas & inibidores , NAD/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Fatores de Tempo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...