Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Math Biosci ; 360: 108957, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36804448

RESUMO

We analyse and mutually compare time series of covid-19-related data and mobility data across Belgium's 43 arrondissements (NUTS 3). In this way, we reach three conclusions. First, we could detect a decrease in mobility during high-incidence stages of the pandemic. This is expressed as a sizeable change in the average amount of time spent outside one's home arrondissement, investigated over five distinct periods, and in more detail using an inter-arrondissement "connectivity index" (CI). Second, we analyse spatio-temporal covid-19-related hospitalisation time series, after smoothing them using a generalise additive mixed model (GAMM). We confirm that some arrondissements are ahead of others and morphologically dissimilar to others, in terms of epidemiological progression. The tools used to quantify this are time-lagged cross-correlation (TLCC) and dynamic time warping (DTW), respectively. Third, we demonstrate that an arrondissement's CI with one of the three identified first-outbreak arrondissements is correlated to a substantial local excess mortality some five to six weeks after the first outbreak. More generally, we couple results leading to the first and second conclusion, in order to demonstrate an overall correlation between CI values on the one hand, and TLCC and DTW values on the other. We conclude that there is a strong correlation between physical movement of people and viral spread in the early stage of the sars-cov-2 epidemic in Belgium, though its strength weakens as the virus spreads.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , Bélgica/epidemiologia , Pandemias , Surtos de Doenças
2.
Appl Math Model ; 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38620163

RESUMO

In this work, we extend our previously developed compartmental SEIQRD model for sars-cov-2 in Belgium. We introduce sars-cov-2 variants of concern, vaccines, and seasonality in our model, as their addition has proven necessary for modelling sars-cov-2 transmission dynamics during the 2020-2021 covid-19 pandemic in Belgium. The model is geographically stratified into eleven spatial patches (provinces), and a telecommunication dataset provided by Belgium's biggest operator is used to incorporate interprovincial mobility. We calibrate the model using the daily number of hospitalisations in each province and serological data. We find the model adequately describes these data, but the addition of interprovincial mobility was not necessary to obtain an accurate description of the 2020-2021 sars-cov-2 pandemic in Belgium. We further demonstrate how our model can be used to help policymakers decide on the optimal timing of the release of social restrictions.We find that adding spatial heterogeneity by geographically stratifying the model results in more uncertain model projections as compared to an equivalent nation-level model, which has both communicative advantages and disadvantages. We finally discuss the impact of imposing local mobility or social contact restrictions to contain an epidemic in a given province and find that lowering social contact is a more effective strategy than lowering mobility.

3.
Epidemics ; 37: 100505, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34649183

RESUMO

We present a compartmental extended SEIQRD metapopulation model for SARS-CoV-2 spread in Belgium. We demonstrate the robustness of the calibration procedure by calibrating the model using incrementally larger datasets and dissect the model results by computing the effective reproduction number at home, in workplaces, in schools, and during leisure activities. We find that schools and home contacts are important transmission pathways for SARS-CoV-2 under lockdown measures. School reopening has the potential to increase the effective reproduction number from Re=0.66±0.04 (95 % CI) to Re=1.09±0.05 (95 % CI) under lockdown measures. The model accounts for the main characteristics of SARS-CoV-2 transmission and COVID-19 disease and features a detailed representation of hospitals with parameters derived from a dataset consisting of 22 136 hospitalized patients. Social contact during the pandemic is modeled by scaling pre-pandemic contact matrices with Google Community Mobility data and with effectivity-of-contact parameters inferred from hospitalization data. The calibrated social contact model with its publically available mobility data, although coarse-grained, is a cheap and readily available alternative to social-epidemiological contact studies under lockdown measures, which were not available at the start of the pandemic.


Assuntos
COVID-19 , SARS-CoV-2 , Bélgica/epidemiologia , Controle de Doenças Transmissíveis , Humanos , Pandemias/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...