Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet Parasitol ; 328: 110178, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38569277

RESUMO

The control of the sheep blowfly relies on the use of insecticides. There have been several reports of in vitro and in vivo resistance to the most widely-used flystrike control chemical, dicyclanil. A recent report also described in vitro resistance to imidacloprid in a strain collected from a single property over three consecutive seasons that also showed resistance to dicyclanil. The present study aimed to use in vitro assays to examine five field-collected blowfly strains to determine if this co-occurrence of resistance to dicyclanil and imidacloprid was present more widely in field strains and to also measure resistance patterns to the other currently-used flystrike control chemicals. Each of the strains showed significant levels of resistance to both dicyclanil and imidacloprid: resistance factors at the IC50 of 9.1-23.8 for dicyclanil, and 8.7-14.1 for imidacloprid. Resistance factors at the IC95 ranged from 16.5 to 53.7, and 14.6-24.3 for dicyclanil and imidacloprid, respectively. Resistance factors were up to 8.5 for cyromazine at the IC95. Resistance to dicyclanil and imidacloprid was suppressed by co-treatment with the cytochrome P450 inhibitor, aminobenzotriazole, implicating this enzyme system in the observed resistances. We discuss the implications of the co-occurrence of resistance to dicyclanil and imidacloprid on insecticide rotation strategies for blowfly control. We also discuss the roles of insecticide resistance, environmental factors (e.g. rainfall), operational factors (e.g. insecticide application technique) and other animal health issues (e.g. scouring / diarrhoea) that together will impact on the likelihood of flystrike occurring at an earlier time point than expected after insecticide application.


Assuntos
Dípteros , Resistência a Inseticidas , Inseticidas , Neonicotinoides , Nitrocompostos , Animais , Inseticidas/farmacologia , Neonicotinoides/farmacologia , Nitrocompostos/farmacologia , Dípteros/efeitos dos fármacos , Ovinos , Doenças dos Ovinos/parasitologia , Hormônios Juvenis , Triazinas
2.
Vet Parasitol ; 317: 109917, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37001325

RESUMO

Control of flystrike on sheep relies on the use of insecticides. The present study used in vitro assays to examine the potential for increasing the efficacy of synthetic pyrethroids against sheep blowfly larvae using the synergist piperonyl butoxide (PBO). We examined the potency of alpha-cypermethrin (ACP) / PBO combinations against a reference insecticide-susceptible strain (LS) and a field-derived strain showing resistance to dicyclanil and imidacloprid. Co-treatment of the insecticide-susceptible strain with ACP/PBO resulted in increasing levels of synergism as the PBO concentration was increased, with synergism ratios (SRs) of up to 114-fold. Treatment with PBO/ACP combinations at ratios of 20:1 and 5:1 resulted in significant levels of synergism: SRs of 13.5- and 7.6-fold, respectively. However, the levels of synergism were significantly less for the insecticide-resistant strain: SRs of 4.6- and 2.6-fold for the 20:1 and 5:1 ratios, respectively. The resistant strain showed no resistance to ACP when administered alone, however, was 2-fold less sensitive than the LS strain to the toxic effects of PBO alone. This insensitivity to PBO was removed by co-treatment with the P450 inhibitor aminobenzotriazole, suggesting an increased level of P450-mediated metabolism of the PBO in this strain compared to the LS strain, and hence providing a likely explanation for the reduced synergistic efficacy of PBO on ACP toxicity in the resistant strain. While PBO was able to synergise ACP with both of the blowfly strains examined here, the reduced synergistic efficacy observed with the field-derived insecticide-resistant strain lessens the potential usefulness of such a combination for blowfly control in the field.


Assuntos
Dípteros , Inseticidas , Piretrinas , Animais , Inseticidas/farmacologia , Butóxido de Piperonila/farmacologia , Resistência a Inseticidas , Calliphoridae , Sinergistas de Praguicidas/farmacologia , Piretrinas/farmacologia
3.
Pest Manag Sci ; 78(10): 4195-4206, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35690912

RESUMO

BACKGROUND: The sheep blowfly, Lucila cuprina, is a myiasis-causing parasite responsible for significant production losses and welfare issues for the Australian sheep industry. Control relies largely on the use of insecticides. The pyrimidine compound, dicyclanil, is the predominant control chemical, although other insecticides also are used, including imidacloprid, ivermectin, cyromazine and spinosad. We investigated in vitro resistance patterns and mechanisms in field-collected blowfly strains. RESULTS: The Walgett 2019 strain showed significant levels of resistance to both dicyclanil and imidacloprid, with resistance factors at the IC50 of 26- and 17-fold, respectively, in in vitro bioassays. Co-treatment with the cytochrome P450 inhibitor, aminobenzotriazole, resulted in significant levels of synergism for dicyclanil and imidacloprid (synergism ratios of 7.2- and 6.1-fold, respectively), implicating cytochrome P450 in resistance to both insecticides. Cyp12d1 transcription levels were increased up to 40-fold throughout the larval life stages in the resistant strain compared to a reference susceptible strain, whereas transcription levels of some other cyp genes (6g1, 4d1, 28d1) did not differ between the strains. Similar resistance levels also were observed in flies collected from the same property in two subsequent years. CONCLUSION: This study indicates that in vitro resistance to both dicyclanil and imidacloprid in this field-collected blowfly strain is likely mediated by cytochrome P450, with Cyp12d1 implicated as the enzyme responsible; however, it remains possible that another P450 also may be involved. A common resistance mechanism for the two drugs has important implications for drug rotation strategies designed to prolong the useful life of flystrike control chemicals. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Dípteros , Inseticidas , Animais , Austrália , Calliphoridae , Sistema Enzimático do Citocromo P-450/genética , Resistência a Inseticidas , Inseticidas/farmacologia , Hormônios Juvenis , Neonicotinoides , Nitrocompostos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...