Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36987317

RESUMO

Polyethylene is one of the most used polymers in a variety of sectors. A typical technique used to assess aging is infrared spectroscopy. Under oxidation, the region of the spectrum that is most studied is the one containing the carbonyl signature. However, various carbonyl groups contribute to the carbonyl peak: ketones, aldehydes, esters, lactones, carboxylic acids, and more. A usual procedure to quantify each of them is the deconvolution of experimental peaks based on experimental assignments of infrared bands. In this paper, we complement this procedure, applied to two polyethylene types, with extended density functional theory (DFT) calculations of infrared spectra, using a polyethylene model mimicking the main features of a semicrystalline polymer. We compare theoretical frequencies and infrared intensities with parameters extracted from the literature that are used to, eventually, estimate concentrations. We provide an alternative estimation entirely based on theoretical data, showing that DFT can be a valuable tool to analyze, or at least complement, experimental data to assess polymer aging. The comparison of different deconvolution procedures raises the question of the contribution of conjugated ketones in the global carbonyl buildup, as well as that of ketones/alcohols pairs, or the relative concentration of esters and aldehydes.

2.
Polymers (Basel) ; 13(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209941

RESUMO

Understanding the degradation mechanisms of aliphatic polymers by thermal oxidation and radio-oxidation is very important in order to assess their lifetime in a variety of industrial applications. We focus here on polyethylene as a prototypical aliphatic polymer. Kinetic models describing the time evolution of the concentration of chain defects and radicals species in the material identify a relevant step in the formation and subsequent decomposition of transient hydroperoxides species, finally leading to carbonyl defects, in particular ketones. In this paper, we first summarize the most relevant mechanistic paths proposed in the literature for hydroperoxide formation and decomposition and, second, revisit them using first principles calculations based on Density Functional Theory (DFT). Our results partially confirm commonly accepted reaction energies, but also propose alternative, more favourable, reaction paths. We highlight the influence of the environment-crystalline or not-on the outcome of some of the studied chemical reactions. A remarkable result of our calculations is that hydroxyl radicals play an important role in the decomposition of hydroperoxides. Based on our findings, it should be possible to improve the set of equations and parameters used in current kinetic simulations of polyethylene radio-oxidation.

3.
ACS Nano ; 12(4): 3477-3486, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29565559

RESUMO

Hybrid organic-inorganic perovskites emerged as a new generation of absorber materials for high-efficiency low-cost solar cells in 2009. Very recently, fully inorganic perovskite quantum dots also led to promising efficiencies, making them a potentially stable and efficient alternative to their hybrid cousins. Currently, the record efficiency is obtained with CsPbI3, whose crystallographical characterization is still limited. Here, we show through high-resolution in situ synchrotron XRD measurements that CsPbI3 can be undercooled below its transition temperature and temporarily maintained in its perovskite structure down to room temperature, stabilizing a metastable perovskite polytype (black γ-phase) crucial for photovoltaic applications. Our analysis of the structural phase transitions reveals a highly anisotropic evolution of the individual lattice parameters versus temperature. Structural, vibrational, and electronic properties of all the experimentally observed black phases are further inspected based on several theoretical approaches. Whereas the black γ-phase is shown to behave harmonically around equilibrium, for the tetragonal phase, density functional theory reveals the same anharmonic behavior, with a Brillouin zone-centered double-well instability, as for the cubic phase. Using total energy and vibrational entropy calculations, we highlight the competition between all the low-temperature phases of CsPbI3 (γ, δ, ß) and show that avoiding the order-disorder entropy term arising from double-well instabilities is key to preventing the formation of the yellow perovskitoid phase. A symmetry-based tight-binding model, validated by self-consistent GW calculations including spin-orbit coupling, affords further insight into their electronic properties, with evidence of Rashba effect for both cubic and tetragonal phases when using the symmetry-breaking structures obtained through frozen phonon calculations.

4.
J Phys Chem B ; 122(6): 2023-2030, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29360369

RESUMO

Polyethylene (PE), one of the simplest and most used aliphatic polymers, is generally provided with a number of additives, in particular antioxidants, because of its tendency to get oxidized. Carbonyl defects, a product of the oxidation of PE, are occurring in various forms, in particular saturated ones, known as ketones, where a C═O double bond substitutes a CH2 group, and various unsaturated ones, i.e., with further missing hydrogens. Many experimental investigations of the optical properties in the visible/UV range mainly attribute the photoluminescence of PE to one specific kind of unsaturated carbonyls, following analogies to the emission spectra of similar small molecules. However, the reason why saturated carbonyls should not be optically detected is not clear. We investigated the optical properties of PE with and without carbonyl defects using perturbative GW and the Bethe-Salpeter equation in order to take into account excitonic effects. We discuss the calculated excitonic states in comparison with experimental absorption/emission energies and the stability of both saturated and unsaturated carbonyl defects. We conclude that the unsaturated defects are indeed the best candidate for the luminescence of oxidized PE, and the reason is mainly due to oscillator strengths.

5.
J Phys Chem Lett ; 8(12): 2659-2665, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28553717

RESUMO

Hybrid perovskites have emerged over the past five years as absorber layers for novel high-efficiency low-cost solar cells combining the advantages of organic and inorganic semiconductors. Unfortunately, electrical transport in these materials is still poorly understood. Employing the linear response approach of density functional theory, we reveal strong anharmonic effects and a double-well phonon instability at the center of the Brillouin zone for both cubic and orthorhombic phases of inorganic CsPbI3. Previously reported soft phonon modes are stabilized at the actual lower-symmetry equilibrium structure, which occurs in a very flat energy landscape, highlighting the strong competition between the different phases of CsPbI3. Factoring these low-energy phonons into electron-phonon interactions and band gap calculations could help better understand the electrical transport properties in these materials. Furthermore, the perovskite oscillations through the corresponding energy barrier could explain the underlying ferroelectricity and the dynamical Rashba effect predicted in halide perovskites for photovoltaics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...