Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Curr Microbiol ; 78(1): 218-228, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33236213

RESUMO

Plant growth reduction caused by osmotic stress, pathogens, and nutrient scarcity can be overcome by inoculation with plant growth-promoting rhizobacteria (PGPR). Knowing the effects of PGPR on the microbial community beyond those on plant growth can bring new options of soil microbiota management. The present study aimed to investigate the effect of inoculation with the newly described Pseudomonas aestus CMAA 1215T [a 1-aminocyclopropane-1-carboxylate (ACC) deaminase and glycine-betaine producer] on the rhizosphere bacterial community of Zea mays in natural (non-salinized) and saline soil. The bacterial community structure was assessed by sequencing the V6-V7 16S ribosomal RNA using the Ion Personal Genome Machine™. The non-metric multidimensional scaling (NMDS) of the OTU profile (ANOSIM P < 0.01) distinguishes all the treatments (with and without inoculation under saline and natural soils). Inoculated samples shared 1234 OTUs with non-inoculated soil. The most abundant classes in all samples were Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, Acidobacteriia, Bacteroidia, Thermoleophilia, Verrucomicrobiae, Ktenodobacteria, and Bacilli. The inoculation, on the other hand, caused an increase in the abundance of the genera Bacillus, Bryobacter, Bradyrhizobium, "Candidatus Xiphinematobacter", and "Candidatus Udaeobacter" independent of soil salinization. "Candidatus Udaeobacter" has the largest Mean Decrease in Gini Values with higher abundance on inoculated salted soil. In addition, Pseudomonas inoculation reduced the abundance of Gammaproteobacteria and Phycisphaerae. Understanding how inoculation modifies the bacterial community is essential to manage the rhizospheric microbiome to create a multi-inoculant approach and to understand its effects on ecological function.


Assuntos
Rizosfera , Solo , Bactérias/genética , Raízes de Plantas , Pseudomonas , RNA Ribossômico 16S/genética , Microbiologia do Solo
2.
Arch Microbiol ; 203(3): 1089-1105, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33161466

RESUMO

This study aimed to evaluate the genetic diversity of bacterial community associated to different sugarcane genotypes, association habitat and phenological phase of the culture, as well as to isolate, to identify and to characterize your potential for plant growth-promoting. Root and rhizospheric soil samples from RB 92579 and RB 867515 varieties were collected at 120 and 300 days after regrowth (DAR). The diversity of bacterial was evaluated through of the 16S rRNA and nifH genes. We found greater genetic diversity in the root endophytic habitat at 120 DAR. We identify the genera Burkholderia sp., Pantoea sp., Erwinia sp., Stenotrophomonas sp., Enterobacter sp. and Pseudomonas sp. The genera Bacillus sp. and Dyella sp. were only identified in the variety RB 92579. We found indices above 50% for biological nitrogen fixation, production of indole acetic acid and phosphate solubilization, showing that the use of these bacteria in biotechnological products is very promising.


Assuntos
Bactérias/genética , Ecossistema , Variação Genética , Raízes de Plantas/microbiologia , Saccharum/microbiologia , Genótipo , Ácidos Indolacéticos , Fixação de Nitrogênio/fisiologia , Desenvolvimento Vegetal/fisiologia , RNA Ribossômico 16S/genética , Rizosfera
3.
PLoS One ; 11(1): e0146566, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26752633

RESUMO

The description of microbiomes as intrinsic fractions of any given ecosystem is an important issue, for instance, by linking their compositions and functions with other biotic and abiotic components of natural systems and hosts. Here we describe the archaeal and bacterial communities from soils of the Atlantic Rainforest in Brazil. Based on the comparison of three areas located along an altitudinal gradient-namely, Santa Virginia, Picinguaba and Restinga-we detected the most abundant groups of Bacteria (Acidobacteria and Proteobacteria) and Archaea (Thaumarchaeota, Crenarchaeota and Euryarchaeota). The particular composition of such communities in each of these areas was first evidenced by PCR-DGGE patterns [determined for Bacteria, Archaea and ammonia-oxidizing organisms-ammonia-oxidizing archaea (AOA) and bacteria (AOB)]. Moreover, sequence-based analysis provided a better resolution of communities, which indicated distinct frequencies of archaeal phyla and bacterial OTUs across areas. We found, as indicated by the Mantel test and multivariate analyses, a potential effect of the flora composition that outpaces the effect of soil characteristics (either physical and chemical) influencing the assembly of these microbial communities in soils. Our results indicate a collective role of the ecosystem underlying observed differences in microbial communities in these soils. Particularly, we posit that rainforest preservation also needs to take into account the maintenance of the soil biodiversity, as this is prompted to influence major processes that affect ecosystem functioning.


Assuntos
Archaea/genética , Bactérias/genética , Biodiversidade , Floresta Úmida , Microbiologia do Solo , Archaea/classificação , Bactérias/classificação , Ecossistema
4.
Antonie Van Leeuwenhoek ; 108(1): 15-30, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25900454

RESUMO

The rumen is a complex ecosystem enriched for microorganisms able to degrade biomass during the animal's digestion process. The recovery of new enzymes from naturally evolved biomass-degrading microbial communities is a promising strategy to overcome the inefficient enzymatic plant destruction in industrial production of biofuels. In this context, this study aimed to describe the bacterial composition and functions in the sheep rumen microbiome, focusing on carbohydrate-active enzymes (CAE). Here, we used phylogenetic profiling analysis (inventory of 16S rRNA genes) combined with metagenomics to access the rumen microbiome of four sheep and explore its potential to identify fibrolytic enzymes. The bacterial community was dominated by Bacteroidetes and Firmicutes, followed by Proteobacteria. As observed for other ruminants, Prevotella was the dominant genus in the microbiome, comprising more than 30 % of the total bacterial community. Multivariate analysis of the phylogenetic profiling data and chemical parameters showed a positive correlation between the abundance of Prevotellaceae (Bacteroidetes phylum) and organic matter degradability. A negative correlation was observed between Succinivibrionaceae (Proteobacteria phylum) and methane production. An average of 2 % of the shotgun metagenomic reads was assigned to putative CAE when considering nine protein databases. In addition, assembled contigs allowed recognition of 67 putative partial CAE (NCBI-Refseq) representing 12 glycosyl hydrolase families (Pfam database). Overall, we identified a total of 28 lignocellulases, 22 amylases and 9 other putative CAE, showing the sheep rumen microbiome as a promising source of new fibrolytic enzymes.


Assuntos
Bactérias/classificação , Bactérias/enzimologia , Metabolismo dos Carboidratos , Glicosídeo Hidrolases/metabolismo , Microbiota , Rúmen/microbiologia , Ovinos , Animais , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Glicosídeo Hidrolases/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...