Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Clin Neurophysiol ; 160: 38-46, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38395005

RESUMO

OBJECTIVE: Sensorineural hearing-loss (SHL) is accompanied by changes in the entire ear-brain pathway and its connected regions. While hearing-aid (HA) partially compensates for SHL, speech perception abilities often continue to remain poor, resulting in consequences in everyday activities. Repetitive transcranial magnetic stimulation (rTMS) promotes cortical network plasticity and may enhance language comprehension in SHL patients. METHODS: 27 patients using HA and with SHL were randomly assigned to a treatment protocol consisting of five consecutive days of either real (Active group: 13 patients) or placebo rTMS (Sham group: 14 patients). The stimulation parameters were as follows: 2-second trains at 10 Hz, 4-second inter-train-interval, and 1800 pulses. Neuronavigated rTMS was applied over the left superior temporal sulcus. Audiological tests were administered before (T0), immediately after (T1), and one week following treatment completion (T2) to evaluate the speech reception threshold (SRT) and the Pure Tone Average (PTA). RESULTS: In the context of a general improvement likely due to learning, the treatment with real rTMS induced significant reduction of the SRT and PTA at T1 and T2 versus placebo. CONCLUSIONS: The long-lasting effects on SRT and PTA observed in the Active group indicates that rTMS administered over the auditory cortex could promote sustained neuromodulatory-induced changes in the brain, improving the perception of complex sentences and pure tones reception skills. SIGNIFICANCE: Five days of rTMS treatment enhances overall speech intelligibility and PTA in SHL patients.


Assuntos
Córtex Auditivo , Perda Auditiva Neurossensorial , Percepção da Fala , Humanos , Estimulação Magnética Transcraniana/métodos , Inteligibilidade da Fala , Perda Auditiva Neurossensorial/terapia , Percepção da Fala/fisiologia , Resultado do Tratamento
2.
Neurotherapeutics ; 20(6): 1796-1807, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37721646

RESUMO

Virtual reality (VR) applications are pervasive of everyday life, as in working, medical, and entertainment scenarios. There is yet no solution to cybersickness (CS), a disabling vestibular syndrome with nausea, dizziness, and general discomfort that most of VR users undergo, which results from an integration mismatch among visual, proprioceptive, and vestibular information. In a double-blind, controlled trial, we propose an innovative treatment for CS, consisting of online oscillatory imperceptible neuromodulation with transcranial alternating current stimulation (tACS) at 10 Hz, biophysically modelled to reach the vestibular cortex bilaterally. tACS significantly reduced CS nausea in 37 healthy subjects during a VR rollercoaster experience. The effect was frequency-dependent and placebo-insensitive. Subjective benefits were paralleled by galvanic skin response modulation in 25 subjects, addressing neurovegetative activity. Besides confirming the role of transcranially delivered oscillations in physiologically tuning the vestibular system function (and dysfunction), results open a new way to facilitate the use of VR in different scenarios and possibly to help treating also other vestibular dysfunctions.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Realidade Virtual , Humanos , Náusea , Modalidades de Fisioterapia , Sistema Vestibular , Método Duplo-Cego
3.
Int. j. clin. health psychol. (Internet) ; 23(3)jul.-sep. 2023. tab, ilus
Artigo em Inglês | IBECS | ID: ibc-218538

RESUMO

Violence is a major problem in our society and therefore research into the neural underpinnings of aggression has grown exponentially. Although in the past decade the biological underpinnings of aggressive behavior have been examined, research on neural oscillations in violent offenders during resting-state electroencephalography (rsEEG) remains scarce. In this study we aimed to investigate the effect of high-definition transcranial direct current stimulation (HD-tDCS) on frontal theta, alpha and beta frequency power, asymmetrical frontal activity, and frontal synchronicity in violent offenders.Fifty male violent forensic patients diagnosed with a substance dependence were included in a double-blind sham-controlled randomized study. The patients received 20 minutes of HD-tDCS two times a day on five consecutive days. Before and after the intervention, the patients underwent a rsEEG task.Results showed no effect of HD-tDCS on the power in the different frequency bands. Also, no increase in asymmetrical activity was found. However, we found increased synchronicity in frontal regions in the alpha and beta frequency bands indicating enhanced connectivity in frontal brain regions as a result of the HD-tDCS-intervention.This study has enhanced our understanding of the neural underpinnings of aggression and violence, pointing to the importance of alpha and beta frequency bands and their connectivity in frontal brain regions. Although future studies should further investigate the complex neural underpinnings of aggression in different populations and using whole-brain connectivity, it can be suggested with caution, that HD-tDCS could be an innovative method to regain frontal synchronicity in neurorehabilitation. (AU)


Assuntos
Humanos , Masculino , Feminino , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Violência , Transtornos Relacionados ao Uso de Substâncias , Criminosos , Estimulação Transcraniana por Corrente Contínua , Eletroencefalografia , Agressão
4.
Clin Neurophysiol ; 153: 123-132, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37481873

RESUMO

OBJECTIVE: The vestibular cortex is a multisensory associative region that, in neuroimaging investigations, is activated by slow-frequency (1-2 Hz) galvanic stimulation of peripheral receptors. We aimed to directly activate the vestibular cortex with biophysically modeled transcranial oscillatory current stimulation (tACS) in the same frequency range. METHODS: Thirty healthy subjects and one rare patient with chronic bilateral vestibular deafferentation underwent, in a randomized, double-blind, controlled trial, to tACS at slow (1 or 2 Hz) or higher (10 Hz) frequency and sham stimulations, over the Parieto-Insular Vestibular Cortex (PIVC), while standing on a stabilometric platform. Subjective symptoms of motion sickness were scored by Simulator Sickness Questionnaire and subjects' postural sways were monitored on the platform. RESULTS: tACS at 1 and 2 Hz induced symptoms of motion sickness, oscillopsia and postural instability, that were supported by posturographic sway recordings. Both 10 Hz-tACS and sham stimulation on the vestibular cortex did not affect vestibular function. As these effects persisted in a rare patient with bilateral peripheral vestibular areflexia documented by the absence of the Vestibular-Ocular Reflex, the possibility of a current spread toward peripheral afferents is unlikely. Conversely, the 10 Hz-tACS significantly reduced his chronic vestibular symptoms in this patient. CONCLUSIONS: Weak electrical oscillations in a frequency range corresponding to the physiological cortical activity of the vestibular system may generate motion sickness and postural sways, both in healthy subjects and in the case of bilateral vestibular deafferentation. SIGNIFICANCE: This should be taken into account as a new side effect of tACS in future studies addressing cognitive functions. Higher frequencies of stimulation applied to the vestibular cortex may represent a new interventional option to reduce motion sickness in different scenarios.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Vestíbulo do Labirinto , Humanos , Vestíbulo do Labirinto/fisiologia , Cognição , Neuroimagem , Posição Ortostática , Método Duplo-Cego , Estimulação Transcraniana por Corrente Contínua/métodos
5.
Neurology ; 101(12): e1218-e1230, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37500561

RESUMO

BACKGROUND AND OBJECTIVES: Choroid plexus (ChP) is emerging as a key brain structure in the pathophysiology of neurodegenerative disorders. In this observational study, we investigated ChP volume in a large cohort of patients with frontotemporal lobar degeneration (FTLD) spectrum to explore a possible link between ChP volume and other disease-specific biomarkers. METHODS: Participants included patients meeting clinical criteria for a probable syndrome in the FTLD spectrum. Structural brain MRI imaging, serum neurofilament light (NfL), serum phosphorylated-Tau181 (p-Tau181), and cognitive and behavioral data were collected. MRI ChP volumes were obtained from an ad-hoc segmentation model based on a Gaussian Mixture Models algorithm. RESULTS: Three-hundred and sixteen patients within FTLD spectrum were included in this study, specifically 135 patients diagnosed with behavioral variant frontotemporal dementia (bvFTD), 75 primary progressive aphasia, 46 progressive supranuclear palsy, and 60 corticobasal syndrome. In addition, 82 age-matched healthy participants were recruited as controls (HCs). ChP volume was significantly larger in patients with FTLD compared with HC, across the clinical subtype. Moreover, we found a significant difference in ChP volume between HC and patients stratified for disease-severity based on CDR plus NACC FTLD, including patients at very early stage of the disease. Interestingly, ChP volume correlated with serum NfL, cognitive/behavioral deficits, and with patterns of cortical atrophy. Finally, ChP volume seemed to discriminate HC from patients with FTLD better than other previously identified brain structure volumes. DISCUSSION: Considering the clinical, pathologic, and genetic heterogeneity of the disease, ChP could represent a potential biomarker across the FTLD spectrum, especially at the early stage of disease. Further longitudinal studies are needed to establish its role in disease onset and progression. CLASSIFICATION OF EVIDENCE: This study provides Class III evidence that choroid plexus volume, as measured on MRI scan, can assist in differentiating patients with FTLD from healthy controls and in characterizing disease severity.


Assuntos
Demência Frontotemporal , Degeneração Lobar Frontotemporal , Doenças Neurodegenerativas , Humanos , Demência Frontotemporal/diagnóstico , Plexo Corióideo/diagnóstico por imagem , Plexo Corióideo/patologia , Degeneração Lobar Frontotemporal/patologia , Biomarcadores , Gravidade do Paciente
6.
Sci Rep ; 13(1): 7667, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37169900

RESUMO

The combination of TMS and EEG has the potential to capture relevant features of Alzheimer's disease (AD) pathophysiology. We used a machine learning framework to explore time-domain features characterizing AD patients compared to age-matched healthy controls (HC). More than 150 time-domain features including some related to local and distributed evoked activity were extracted from TMS-EEG data and fed into a Random Forest (RF) classifier using a leave-one-subject out validation approach. The best classification accuracy, sensitivity, specificity and F1 score were of 92.95%, 96.15%, 87.94% and 92.03% respectively when using a balanced dataset of features computed globally across the brain. The feature importance and statistical analysis revealed that the maximum amplitude of the post-TMS signal, its Hjorth complexity and the amplitude of the TEP calculated in the window 45-80 ms after the TMS-pulse were the most relevant features differentiating AD patients from HC. TMS-EEG metrics can be used as a non-invasive tool to further understand the AD pathophysiology and possibly contribute to patients' classification as well as longitudinal disease tracking.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico , Imageamento por Ressonância Magnética , Encéfalo , Biomarcadores , Eletroencefalografia
7.
Int J Clin Health Psychol ; 23(3): 100374, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875007

RESUMO

Violence is a major problem in our society and therefore research into the neural underpinnings of aggression has grown exponentially. Although in the past decade the biological underpinnings of aggressive behavior have been examined, research on neural oscillations in violent offenders during resting-state electroencephalography (rsEEG) remains scarce. In this study we aimed to investigate the effect of high-definition transcranial direct current stimulation (HD-tDCS) on frontal theta, alpha and beta frequency power, asymmetrical frontal activity, and frontal synchronicity in violent offenders. Fifty male violent forensic patients diagnosed with a substance dependence were included in a double-blind sham-controlled randomized study. The patients received 20 minutes of HD-tDCS two times a day on five consecutive days. Before and after the intervention, the patients underwent a rsEEG task. Results showed no effect of HD-tDCS on the power in the different frequency bands. Also, no increase in asymmetrical activity was found. However, we found increased synchronicity in frontal regions in the alpha and beta frequency bands indicating enhanced connectivity in frontal brain regions as a result of the HD-tDCS-intervention. This study has enhanced our understanding of the neural underpinnings of aggression and violence, pointing to the importance of alpha and beta frequency bands and their connectivity in frontal brain regions. Although future studies should further investigate the complex neural underpinnings of aggression in different populations and using whole-brain connectivity, it can be suggested with caution, that HD-tDCS could be an innovative method to regain frontal synchronicity in neurorehabilitation.

8.
Neurosci Biobehav Rev ; 142: 104867, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36122739

RESUMO

Mental health disorders and substance use disorders are a leading cause of morbidity and mortality worldwide, and one of the most important challenges for public health systems. While evidence-based psychotherapy is generally pursued to address mental health challenges, psychological change is often hampered by non-adherence to treatments, relapses, and practical barriers (e.g., time, cost). In recent decades, Non-invasive brain stimulation (NIBS) techniques have emerged as promising tools to directly target dysfunctional neural circuitry and promote long-lasting plastic changes. While the therapeutic efficacy of NIBS protocols for mental illnesses has been established, neuromodulatory interventions might also be employed to support the processes activated by psychotherapy. Indeed, combining psychotherapy with NIBS might help tailor the treatment to the patient's unique characteristics and therapeutic goal, and would allow more direct control of the neuronal changes induced by therapy. Herein, we overview emerging evidence on the use of NIBS to enhance the psychotherapeutic effect, while highlighting the next steps in advancing clinical and research methods toward personalized intervention approaches.


Assuntos
Transtornos Relacionados ao Uso de Substâncias , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Magnética Transcraniana/métodos , Estimulação Transcraniana por Corrente Contínua/métodos , Psicoterapia/métodos , Transtornos Relacionados ao Uso de Substâncias/terapia , Encéfalo/fisiologia
9.
Psychiatry Clin Neurosci ; 76(10): 512-524, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35773784

RESUMO

AIM: Working memory (WM) deficit represents the most common cognitive impairment in psychiatric and neurodevelopmental disorders, making the identification of its neural substrates a crucial step towards the conceptualization of restorative interventions. We present a meta-analysis focusing on neural activations associated with the most commonly used task to measure WM, the N-back task, in patients with schizophrenia, depressive disorder, bipolar disorder, and attention-deficit/hyperactivity disorder. Showing qualitative similarities and differences in WM processing between patients and healthy controls, we propose possible targets for cognitive enhancement approaches. METHODS: Selected studies, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, were analyzed through the activation likelihood estimate statistical framework, with subsequent generation of disorder-specific N-back activation maps. RESULTS: Despite similar WM deficits shared across all disorders, results highlighted different brain activation patterns for each disorder compared with healthy controls. In general, results showed brain activity in frontal, parietal, subcortical, and cerebellar regions; however, reduced engagement of specific nodes of the fronto-parietal network emerged in patients compared with healthy controls. In particular, neither bipolar nor depressive disorders showed detectable activations in the dorsolateral prefrontal cortices, while their parietal activation patterns were lateralized to the left and right hemispheres, respectively. On the other hand, patients with attention-deficit/hyperactivity disorder showed a lack of activation in the left parietal lobe, whereas patients with schizophrenia showed lower activity over the left prefrontal cortex. CONCLUSION: These results, together with biophysical modeling, were then used to discuss the design of future disorder-specific cognitive enhancement interventions based on noninvasive brain stimulation.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Mapeamento Encefálico , Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Encéfalo , Humanos , Funções Verossimilhança , Imageamento por Ressonância Magnética , Transtornos da Memória , Memória de Curto Prazo/fisiologia , Testes Neuropsicológicos , Córtex Pré-Frontal , Análise e Desempenho de Tarefas
10.
Neural Plast ; 2022: 6197505, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35880231

RESUMO

Over the past few years, the possibility of modulating fast brain oscillatory activity in the gamma (γ) band through transcranial alternating current stimulation (tACS) has been discussed in the context of both cognitive enhancement and therapeutic scenarios. However, the effects of tACS targeting regions outside the motor cortex, as well as its spatial specificity, are still unclear. Here, we present a concurrent tACS-fMRI block design study to characterize the impact of 40 Hz tACS applied over the left and right dorsolateral prefrontal cortex (DLPFC) in healthy subjects. Results suggest an increase in blood oxygenation level-dependent (BOLD) activity in the targeted bilateral DLPFCs, as well as in surrounding brain areas affected by stimulation according to biophysical modeling, i.e., the premotor cortex and anterior cingulate cortex (ACC). However, off-target effects were also observed, primarily involving the visual cortices, with further effects on the supplementary motor areas (SMA), left subgenual cingulate, and right superior temporal gyrus. The specificity of 40 Hz tACS over bilateral DLPFC and the possibility for network-level effects should be considered in future studies, especially in the context of recently promoted gamma-induction therapeutic protocols for neurodegenerative disorders.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Mapeamento Encefálico/métodos , Córtex Pré-Frontal Dorsolateral , Humanos , Imageamento por Ressonância Magnética/métodos , Projetos Piloto , Córtex Pré-Frontal/diagnóstico por imagem , Estimulação Transcraniana por Corrente Contínua/métodos
11.
Artigo em Inglês | MEDLINE | ID: mdl-34087482

RESUMO

BACKGROUND: Studies have shown that impairments in the ventromedial prefrontal cortex play a crucial role in violent behavior in forensic patients who also abuse cocaine and alcohol. Moreover, interventions that aimed to reduce violence risk in those patients are found not to be optimal. A promising intervention might be to modulate the ventromedial prefrontal cortex by high-definition (HD) transcranial direct current stimulation (tDCS). The current study aimed to examine HD-tDCS as an intervention to increase empathic abilities and reduce violent behavior in forensic substance dependent offenders. In addition, using electroencephalography, we examined the effects on the P3 and the late positive potential of the event-related potentials in reaction to situations that depict victims of aggression. METHODS: Fifty male forensic patients with a substance dependence were tested in a double-blind, placebo-controlled randomized study. The patients received HD-tDCS 2 times a day for 20 minutes for 5 consecutive days. Before and after the intervention, the patients completed self-reports and performed the Point Subtraction Aggression Paradigm, and electroencephalography was recorded while patients performed an empathy task. RESULTS: Results showed a decrease in aggressive responses on the Point Subtraction Aggression Paradigm and in self-reported reactive aggression in the active tDCS group. Additionally, we found a general increase in late positive potential amplitude after active tDCS. No effects on trait empathy and the P3 were found. CONCLUSIONS: Current findings are the first to find positive effects of HD-tDCS in reducing aggression and modulating electrophysiological responses in forensic patients, showing the potential of using tDCS as an intervention to reduce aggression in forensic mental health care.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Agressão/fisiologia , Eletroencefalografia , Potenciais Evocados/fisiologia , Humanos , Masculino , Córtex Pré-Frontal/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos
12.
Mol Psychiatry ; 27(3): 1658-1666, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34903861

RESUMO

There is growing evidence that placebo effects can meaningfully modulate the brain. However, there has been little consideration of whether these changes may overlap with regions/circuits targeted by depression treatments and what the implications of this overlap would be on measuring efficacy in placebo-controlled clinical trials. In this systematic review and meta-analysis, we searched PubMed/Medline and Google Scholar for functional MRI and PET neuroimaging studies of placebo effects. Studies recruiting both healthy subjects and patient populations were included. Neuroimaging coordinates were extracted and included for Activation Likelihood Estimation (ALE) meta-analysis. We then searched for interventional studies of transcranial magnetic stimulation (TMS) and deep brain stimulation (DBS) for depression and extracted target coordinates for comparative spatial analysis with the placebo effects maps. Of 1169 articles identified, 34 neuroimaging studies of placebo effects were included. There were three significant clusters of activation: left dorsolateral prefrontal cortex (DLPFC) (x = -41, y = 16, z = 34), left sub-genual anterior cingulate cortex (sgACC)/ventral striatum (x = -8, y = 18, z = -15) and the right rostral anterior cingulate cortex (rACC) (x = 4, y = 42, z = 10). There were two significant deactivation clusters: right basal ganglia (x = 20, y = 2, z = 7) and right dorsal anterior cingulate cortex (dACC) (x = 1, y = -5, z = 45). TMS and DBS targets for depression treatment overlapped with the left DLPFC cluster and sgACC cluster, respectively. Our findings identify a common set of brain regions implicated in placebo effects across healthy individuals and patient populations, and provide evidence that these regions overlap with depression treatment targets. We model the statistical impacts of this overlap and demonstrate critical implications on measurements of clinical trial efficacy for this field.


Assuntos
Depressão , Efeito Placebo , Depressão/terapia , Giro do Cíngulo , Humanos , Imageamento por Ressonância Magnética , Neuroimagem , Córtex Pré-Frontal , Estimulação Magnética Transcraniana/métodos
13.
J Neuroimaging ; 32(2): 314-327, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34964182

RESUMO

BACKGROUND AND PURPOSE: Obstructive sleep apnea (OSA) syndrome is a sleep disorder characterized by excessive snoring, repetitive apneas, and nocturnal arousals, that leads to fragmented sleep and intermittent nocturnal hypoxemia. Morphometric and functional brain alterations in cortical and subcortical structures have been documented in these patients via magnetic resonance imaging (MRI), even if correlational data between the alterations in the brain and cognitive and clinical indexes are still not reported. METHODS: We examined the impact of OSA on brain spontaneous activity by measuring the fractional amplitude of low-frequency fluctuations (fALFF) in resting-state functional MRI data of 20 drug-naïve patients with OSA syndrome and 20 healthy controls matched for age, gender, and body mass index. RESULTS: Patients showed a pattern of significantly abnormal subcortical functional activity as compared to controls, with increased activity selectively involving the thalami, specifically their intrinsic nuclei connected to somatosensory and motor-premotor cortical regions. Using these nuclei as seed regions, the subsequent functional connectivity analysis highlighted an increase in patients' thalamocortical connectivity at rest. Additionally, the correlation between fALFF and polysomnographic data revealed a possible link between OSA severity and fALFF of regions belonging to the central autonomic network. CONCLUSIONS: Our results suggest a hyperactivation in thalamic diurnal activity in patients with OSA syndrome, which we interpret as a possible consequence of increased thalamocortical circuitry activation during nighttime due to repeated arousals.


Assuntos
Mapeamento Encefálico , Apneia Obstrutiva do Sono , Encéfalo , Mapeamento Encefálico/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Apneia Obstrutiva do Sono/diagnóstico por imagem , Tálamo/diagnóstico por imagem
14.
Sci Rep ; 11(1): 18487, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34531441

RESUMO

It is likely that when using an artificially augmented hand with six fingers, the natural five plus a robotic one, corticospinal motor synergies controlling grasping actions might be different. However, no direct neurophysiological evidence for this reasonable assumption is available yet. We used transcranial magnetic stimulation of the primary motor cortex to directly address this issue during motor imagery of objects' grasping actions performed with or without the Soft Sixth Finger (SSF). The SSF is a wearable robotic additional thumb patented for helping patients with hand paresis and inherent loss of thumb opposition abilities. To this aim, we capitalized from the solid notion that neural circuits and mechanisms underlying motor imagery overlap those of physiological voluntary actions. After a few minutes of training, healthy humans wearing the SSF rapidly reshaped the pattern of corticospinal outputs towards forearm and hand muscles governing imagined grasping actions of different objects, suggesting the possibility that the extra finger might rapidly be encoded into the user's body schema, which is integral part of the frontal-parietal grasping network. Such neural signatures might explain how the motor system of human beings is open to very quickly welcoming emerging augmentative bioartificial corticospinal grasping strategies. Such an ability might represent the functional substrate of a final common pathway the brain might count on towards new interactions with the surrounding objects within the peripersonal space. Findings provide a neurophysiological framework for implementing augmentative robotic tools in humans and for the exploitation of the SSF in conceptually new rehabilitation settings.


Assuntos
Córtex Motor/fisiologia , Tratos Piramidais/fisiologia , Robótica/instrumentação , Polegar/fisiologia , Adulto , Membros Artificiais , Potencial Evocado Motor , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Córtex Motor/diagnóstico por imagem , Neurônios Motores/fisiologia , Destreza Motora , Polegar/inervação
16.
J Neurosci Res ; 99(5): 1236-1252, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33634892

RESUMO

Mindfulness is a meditation practice frequently associated with changes in subjective evaluation of cognitive and sensorial experience, as well as with modifications of brain activity and morphometry. Aside from the anatomical localization of functional changes induced by mindfulness practice, little is known about changes in functional and effective functional magnetic resonance imaging (fMRI) connectivity. Here we performed a connectivity fMRI analysis in a group of healthy individuals participating in an 8-week mindfulness-based stress reduction (MBSR) training program. Data from both a "mind-wandering" and a "meditation" state were acquired before and after the MBSR course. Results highlighted decreased local connectivity after training in the right anterior putamen and insula during spontaneous mind-wandering and the right cerebellum during the meditative state. A further effective connectivity analysis revealed (a) decreased modulation by the anterior cingulate cortex over the anterior portion of the putamen, and (b) a change in left and right posterior putamen excitatory input and inhibitory output with the cerebellum, respectively. Results suggest a rearrangement of dorsal striatum functional and effective connectivity in response to mindfulness practice, with changes in cortico-subcortical-cerebellar modulatory dynamics. Findings might be relevant for the understanding of widely documented mindfulness behavioral effects, especially those related to pain perception.


Assuntos
Cerebelo/diagnóstico por imagem , Corpo Estriado/diagnóstico por imagem , Atenção Plena/métodos , Rede Nervosa/diagnóstico por imagem , Estresse Psicológico/diagnóstico por imagem , Estresse Psicológico/terapia , Adulto , Cerebelo/fisiologia , Corpo Estriado/fisiologia , Feminino , Humanos , Masculino , Meditação/métodos , Meditação/psicologia , Rede Nervosa/fisiologia , Estresse Psicológico/psicologia
17.
Clin Neurophysiol ; 132(3): 723-729, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33578337

RESUMO

OBJECTIVE: The presence of a cochlear implant is being considered an absolute contraindication for experiments and/or treatments. We aimed to verify TMS (Transcranial Magnetic Stimulation) compatibility of a new generation of cochlear implants. METHODS: In a series of experiments, we test if MED-EL cochlear implants -compatible with stable fields of magnetic resonance imaging scanning- are fully resistant even to rapidly varying magnetic fields as those generated by single pulses and low and high-frequency trains of repetitive TMS (rTMS) applied with a figure of eight coil and different magnetic stimulators. RESULTS: With a TMS intensity equal or below 2.2 Tesla (T) the cochlear implant and all its electronic components remain fully functional, even when the combination of frequency, intensity and number of pulses exceeds the currently available safety guidelines. Induced forces on the implant are negligible. With higher magnetic fields (i.e., 3.2 T), one device was corrupted. CONCLUSIONS: Results exclude the risk of electronic damaging, demagnetizing or displacements of the studied cochlear implants when exposed to magnetic fields of up to 2.2 T delivered through a focal coil. SIGNIFICANCE: They open the way to use focal rTMS protocols with the aim of promoting neural plasticity in auditory networks, possibly helping the post-implant recovery of speech perception performance.


Assuntos
Implante Coclear/instrumentação , Implante Coclear/tendências , Implantes Cocleares/tendências , Desenho de Equipamento/tendências , Estimulação Magnética Transcraniana/tendências , Implante Coclear/normas , Desenho de Equipamento/métodos , Desenho de Equipamento/normas , Estudos de Viabilidade , Perda Auditiva/diagnóstico , Perda Auditiva/fisiopatologia , Perda Auditiva/cirurgia , Humanos , Plasticidade Neuronal/fisiologia , Estimulação Magnética Transcraniana/métodos
18.
Ageing Res Rev ; 61: 101067, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32380212

RESUMO

As we age, sleep patterns undergo severe modifications of their micro and macrostructure, with an overall lighter and more fragmented sleep structure. In general, interventions targeting sleep represent an excellent opportunity not only to maintain life quality in the healthy aging population, but also to enhance cognitive performance and, when pathology arises, to potentially prevent/slow down conversion from e.g. Mild Cognitive Impairment (MCI) to Alzheimer's Disease (AD). Sleep abnormalities are, in fact, one of the earliest recognizable biomarkers of dementia, being also partially responsible for a cascade of cortical events that worsen dementia pathophysiology, including impaired clearance systems leading to build-up of extracellular amyloid-ß (Aß) peptide and intracellular hyperphosphorylated tau proteins. In this context, Noninvasive Brain Stimulation (NiBS) techniques, such as transcranial electrical stimulation (tES) and transcranial magnetic stimulation (TMS), may help investigate the neural substrates of sleep, identify sleep-related pathology biomarkers, and ultimately help patients and healthy elderly individuals to restore sleep quality and cognitive performance. However, brain stimulation applications during sleep have so far not been fully investigated in healthy elderly cohorts, nor tested in AD patients or other related dementias. The manuscript discusses the role of sleep in normal and pathological aging, reviewing available evidence of NiBS applications during both wakefulness and sleep in healthy elderly individuals as well as in MCI/AD patients. Rationale and details for potential future brain stimulation studies targeting sleep alterations in the aging brain are discussed, including enhancement of cognitive performance, overall quality of life as well as protein clearance.


Assuntos
Doença de Alzheimer , Encéfalo/fisiologia , Disfunção Cognitiva , Estimulação Encefálica Profunda , Estimulação Magnética Transcraniana , Idoso , Envelhecimento , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides , Encéfalo/patologia , Disfunção Cognitiva/terapia , Humanos , Qualidade de Vida , Sono , Transtornos do Sono-Vigília/fisiopatologia , Transtornos do Sono-Vigília/terapia
19.
J Clin Med ; 9(3)2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32197485

RESUMO

Disorder of consciousness (DoC) refers to a group of clinical conditions that may emerge after brain injury, characterized by a varying decrease in the level of consciousness that can last from days to years. An understanding of its neural correlates is crucial for the conceptualization and application of effective therapeutic interventions. Here we propose a quantitative meta-analysis of the neural substrate of DoC emerging from functional magnetic resonance (fMRI) and positron emission tomography (PET) studies. We also map the relevant networks of resulting areas to highlight similarities with Resting State Networks (RSNs) and hypothesize potential therapeutic solutions leveraging network-targeted noninvasive brain stimulation. Available literature was reviewed and analyzed through the activation likelihood estimate (ALE) statistical framework to describe resting-state or task-dependent brain activation patterns in DoC patients. Results show that task-related activity is limited to temporal regions resembling the auditory cortex, whereas resting-state fMRI data reveal a diffuse decreased activation affecting two subgroups of cortical (angular gyrus, middle frontal gyrus) and subcortical (thalamus, cingulate cortex, caudate nucleus) regions. Clustering of their cortical functional connectivity projections identify two main altered functional networks, related to decreased activity of (i) the default mode and frontoparietal networks, as well as (ii) the anterior salience and visual/auditory networks. Based on the strength and topography of their connectivity profile, biophysical modeling of potential brain stimulation solutions suggests the first network as the most feasible target for tES, tDCS neuromodulation in DoC patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...