Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biotechnol ; 383: 73-85, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38340899

RESUMO

Controlling high-mannose (HM) content of therapeutic proteins during process intensification, reformulation for subcutaneous delivery, antibody-drug conjugate or biosimilar manufacturing represents an ongoing challenge. Even though a range of glycosylation levers to increase HM content exist, modulators specially increasing M5 glycans are still scarce. Several compounds of the polyether ionophore family were screened for their ability to selectively increase M5 glycans of mAb products and compared to the well-known α-mannosidase I inhibitor kifunensine known to increase mainly M8-M9 glycans. Maduramycin, amongst other promising polyether ionophores, showed the desired effect on different cell lines. For fed-batch processes, a double bolus addition modulator feed strategy was developed maximizing the effect on glycosylation by minimizing impact on culture performance. Further, a continuous feeding strategy for steady-state perfusion processes was successfully developed, enabling consistent product quality at elevated HM glycan levels. With kifunensine and maduramycin showing inverse effects on the relative HM distribution, a combined usage of these modulators was further evaluated to fine-tune a desired HM glycan pattern. The discovered HM modulators expand the current HM modulating toolbox for biotherapeutics. Their application not only for fed-batch processes, but also steady-state perfusion processes, make them a universal tool with regards to fully continuous manufacturing processes.


Assuntos
Lactonas , Mamíferos , Animais , Glicosilação , Perfusão , Manose , Policetídeos de Poliéter , Polissacarídeos
2.
Biotechnol Bioeng ; 121(2): 640-654, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37965698

RESUMO

Hollow fiber-based membrane filtration has emerged as the dominant technology for cell retention in perfusion processes yet significant challenges in alleviating filter fouling remain unsolved. In this work, the benefits of co-current filtrate flow applied to a tangential flow filtration (TFF) module to reduce or even completely remove Starling recirculation caused by the axial pressure drop within the module was studied by pressure characterization experiments and perfusion cell culture runs. Additionally, a novel concept to achieve alternating Starling flow within unidirectional TFF was investigated. Pressure profiles demonstrated that precise flow control can be achieved with both lab-scale and manufacturing-scale filters. TFF systems with co-current flow showed up to 40% higher product sieving compared to standard TFF. The decoupling of transmembrane pressure from crossflow velocity and filter characteristics in co-current TFF alleviates common challenges for hollow fiber-based systems such as limited crossflow rates and relatively short filter module lengths, both of which are currently used to avoid extensive pressure drop along the filtration module. Therefore, co-current filtrate flow in unidirectional TFF systems represents an interesting and scalable alternative to standard TFF or alternating TFF operation with additional possibilities to control Starling recirculation flow.


Assuntos
Reatores Biológicos , Filtração , Técnicas de Cultura de Células , Perfusão
3.
Biotechnol J ; 19(1): e2300318, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37897126

RESUMO

BACKGROUND: Despite technological advances ensuring stable cell culture perfusion operation over prolonged time, reaching a cellular steady-state metabolism remains a challenge for certain manufacturing cell lines. This study investigated the stabilization of a steady-state perfusion process producing a bispecific antibody with drifting product quality attributes, caused by shifting metabolic activity in the cell culture. MAIN METHODS: A novel on-demand pyruvate feeding strategy was developed, leveraging lactate as an indicator for tricarboxylic acid (TCA) cycle saturation. Real-time lactate monitoring was achieved through in-line Raman spectroscopy, enabling accurate control at predefined target setpoints. MAJOR RESULTS: The implemented feedback control strategy resulted in a three-fold reduction of ammonium accumulation and stabilized product quality profiles. Stable and flat glycosylation profiles were achieved with standard deviations below 0.2% for high mannose and fucosylation. Whereas galactosylation and sialylation were stabilized in a similar manner, varying lactate setpoints might allow for fine-tuning of these glycan forms. IMPLICATION: The Raman-controlled pyruvate feeding strategy represents a valuable tool for continuous manufacturing, stabilizing metabolic activity, and preventing product quality drifting in perfusion cell cultures. Additionally, this approach effectively reduced high mannose, helping to mitigate increases associated with process intensification, such as extended culture durations or elevated culture densities.


Assuntos
Anticorpos Monoclonais , Ácido Pirúvico , Cricetinae , Animais , Ácido Pirúvico/metabolismo , Anticorpos Monoclonais/química , Reatores Biológicos , Cricetulus , Manose , Ácido Láctico/metabolismo , Células CHO
4.
Biotechnol J ; 17(11): e2200184, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35900328

RESUMO

BACKGROUND: Raman spectroscopy has gained popularity to monitor multiple process indicators simultaneously in biopharmaceutical processes. However, robust and specific model calibration remains a challenge due to insufficient analyte variability to train the models and high cross-correlation of various media components and artifacts throughout the process. MAIN METHODS: A systematic Raman calibration workflow for perfusion processes enabling highly specific and fast model calibration was developed. Harvest libraries consisting of frozen harvest samples from multiple CHO cell culture bioreactors collected at different process times were established. Model calibration was subsequently performed in an offline setup using a flow cell by spiking process harvest with glucose, raffinose, galactose, mannose, and fructose. MAJOR RESULTS: In a screening phase, Raman spectroscopy was proven capable not only to distinguish sugars with similar chemical structures in perfusion harvest but also to quantify them independently in process-relevant concentrations. In a second phase, a robust and highly specific calibration model for simultaneous glucose (root mean square error prediction [RMSEP] = 0.32 g L-1 ) and raffinose (RMSEP = 0.17 g L-1 ) real-time monitoring was generated and verified in a third phase during a perfusion process. IMPLICATION: The proposed novel offline calibration workflow allowed proper Raman peak decoupling, reduced calibration time from months down to days, and can be applied to other analytes of interest including lactate, ammonia, amino acids, or product titer.


Assuntos
Reatores Biológicos , Análise Espectral Raman , Cricetinae , Animais , Células CHO , Calibragem , Cricetulus , Rafinose , Análise Espectral Raman/métodos , Perfusão , Glucose/metabolismo
5.
Chimia (Aarau) ; 75(5): 446-452, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34016243

RESUMO

Serological testing for antibodies directed against SARS-CoV-2 in patients may serve as a diagnostic tool to verify a previous infection and as surrogate for an elicited humoral immune response, ideally conferring immunity after infection or vaccination. Here, we present the recombinant expression of an extended receptor binding domain (RBD) of the SARS-CoV-2 Spike protein used as capture antigen in a unique rapid immunoassay to detect the presence of RBD binding antibodies with high sensitivity and specificity. As currently available vaccines focus on the Spike RBD as target, the developed test can also be used to monitor a successful immune response after vaccination with an RBD based vaccine.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Anticorpos Antivirais , Humanos , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...