Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 143(11): 2012-24, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27122167

RESUMO

Taste buds are sensory organs in jawed vertebrates, composed of distinct cell types that detect and transduce specific taste qualities. Taste bud cells differentiate from oropharyngeal epithelial progenitors, which are localized mainly in proximity to the forming organs. Despite recent progress in elucidating the molecular interactions required for taste bud cell development and function, the cell behavior underlying the organ assembly is poorly defined. Here, we used time-lapse imaging to observe the formation of taste buds in live zebrafish larvae. We found that tg(fgf8a.dr17)-expressing cells form taste buds and get rearranged within the forming organs. In addition, differentiating cells move from the epithelium to the forming organs and can be displaced between developing organs. During organ formation, tg(fgf8a.dr17) and type II taste bud cells are displaced in random, directed or confined mode relative to the taste bud they join or by which they are maintained. Finally, ascl1a activity in the 5-HT/type III cell is required to direct and maintain tg(fgf8a.dr17)-expressing cells into the taste bud. We propose that diversity in displacement modes of differentiating cells acts as a key mechanism for the highly dynamic process of taste bud assembly.


Assuntos
Movimento Celular , Organogênese , Papilas Gustativas/citologia , Papilas Gustativas/crescimento & desenvolvimento , Peixe-Zebra/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Contagem de Células , Diferenciação Celular , Linhagem da Célula , Elementos Facilitadores Genéticos/genética , Larva/citologia , Larva/metabolismo , Serotonina/metabolismo , Fatores de Transcrição , Proteínas de Peixe-Zebra/metabolismo
2.
Sci Rep ; 5: 12196, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26194888

RESUMO

Zebrafish larva is a unique model for whole-brain functional imaging and to study sensory-motor integration in the vertebrate brain. To take full advantage of this system, one needs to design sensory environments that can mimic the complex spatiotemporal stimulus patterns experienced by the animal in natural conditions. We report on a novel open-ended microfluidic device that delivers pulses of chemical stimuli to agarose-restrained larvae with near-millisecond switching rate and unprecedented spatial and concentration accuracy and reproducibility. In combination with two-photon calcium imaging and recordings of tail movements, we found that stimuli of opposite hedonic values induced different circuit activity patterns. Moreover, by precisely controlling the duration of the stimulus (50-500 ms), we found that the probability of generating a gustatory-induced behavior is encoded by the number of neurons activated. This device may open new ways to dissect the neural-circuit principles underlying chemosensory perception.


Assuntos
Dispositivos Lab-On-A-Chip , Atividade Motora/fisiologia , Neurônios/fisiologia , Peixe-Zebra/fisiologia , Animais , Comportamento Animal , Bulbo Olfatório/fisiologia , Reologia , Olfato/fisiologia , Paladar/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...