Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 795, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291019

RESUMO

Protein-based virus-like particles (P-VLPs) are commonly used to spatially organize antigens and enhance humoral immunity through multivalent antigen display. However, P-VLPs are thymus-dependent antigens that are themselves immunogenic and can induce B cell responses that may neutralize the platform. Here, we investigate thymus-independent DNA origami as an alternative material for multivalent antigen display using the receptor binding domain (RBD) of the SARS-CoV-2 spike protein, the primary target of neutralizing antibody responses. Sequential immunization of mice with DNA-based VLPs (DNA-VLPs) elicits protective neutralizing antibodies to SARS-CoV-2 in a manner that depends on the valency of the antigen displayed and on T cell help. Importantly, the immune sera do not contain boosted, class-switched antibodies against the DNA scaffold, in contrast to P-VLPs that elicit strong B cell memory against both the target antigen and the scaffold. Thus, DNA-VLPs enhance target antigen immunogenicity without generating scaffold-directed immunity and thereby offer an important alternative material for particulate vaccine design.


Assuntos
Formação de Anticorpos , Glicoproteína da Espícula de Coronavírus , Vacinas de Partículas Semelhantes a Vírus , Humanos , Animais , Camundongos , Anticorpos Bloqueadores , Vacinas de Partículas Semelhantes a Vírus/genética , Anticorpos Neutralizantes , DNA , Anticorpos Antivirais
2.
Stud Health Technol Inform ; 310: 825-829, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38269924

RESUMO

In this study, we implemented a hybrid approach, incorporating temporal data mining, machine learning, and process mining for modeling and predicting the course of treatment of Intensive Care Unit (ICU) patients. We used process mining algorithms to construct models of management of ICU patients. Then, we extracted the decision points from the mined models and used temporal data mining of the periods preceding the decision points to create temporal-pattern features. We trained classifiers to predict the next actions expected for each point. The methodology was evaluated on medical ICU data from the hypokalemia and hypoglycemia domains. The study's contributions include the representation of medical treatment trajectories of ICU patients using process models, and the integration of Temporal Data Mining and Machine Learning with Process Mining, to predict the next therapeutic actions in the ICU.


Assuntos
Hipoglicemia , Unidades de Terapia Intensiva , Humanos , Cuidados Críticos , Algoritmos , Mineração de Dados
3.
bioRxiv ; 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38045401

RESUMO

"Extended priming" immunization regimens that prolong exposure of the immune system to vaccines during the primary immune response have shown promise in enhancing humoral immune responses to a variety of subunit vaccines in preclinical models. We previously showed that escalating-dosing immunization (EDI), where a vaccine is dosed every other day in an increasing pattern over 2 weeks dramatically amplifies humoral immune responses. But such a dosing regimen is impractical for prophylactic vaccines. We hypothesized that simpler dosing regimens might replicate key elements of the immune response triggered by EDI. Here we explored "reduced ED" immunization regimens, assessing the impact of varying the number of injections, dose levels, and dosing intervals during EDI. Using a stabilized HIV Env trimer as a model antigen combined with a potent saponin adjuvant, we found that a two-shot extended-prime regimen consisting of immunization with 20% of a given vaccine dose followed by a second shot with the remaining 80% of the dose 7 days later resulted in increased total GC B cells, 5-10-fold increased frequencies of antigen-specific GC B cells, and 10-fold increases in serum antibody titers compared to single bolus immunization. Computational modeling of the GC response suggested that this enhanced response is mediated by antigen delivered in the second dose being captured more efficiently as immune complexes in follicles, predictions we verified experimentally. Our computational and experimental results also highlight how properly designed reduced ED protocols enhance activation and antigen loading of dendritic cells and activation of T helper cells to amplify humoral responses. These results suggest that a two-shot priming approach can be used to substantially enhance responses to subunit vaccines.

4.
bioRxiv ; 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-36032975

RESUMO

Multivalent antigen display is a well-established principle to enhance humoral immunity. Protein-based virus-like particles (VLPs) are commonly used to spatially organize antigens. However, protein-based VLPs are limited in their ability to control valency on fixed scaffold geometries and are thymus-dependent antigens that elicit neutralizing B cell memory themselves, which can distract immune responses. Here, we investigated DNA origami as an alternative material for multivalent antigen display in vivo, applied to the receptor binding domain (RBD) of SARS-CoV2 that is the primary antigenic target of neutralizing antibody responses. Icosahedral DNA-VLPs elicited neutralizing antibodies to SARS-CoV-2 in a valency-dependent manner following sequential immunization in mice, quantified by pseudo- and live-virus neutralization assays. Further, induction of B cell memory against the RBD required T cell help, but the immune sera did not contain boosted, class-switched antibodies against the DNA scaffold. This contrasted with protein-based VLP display of the RBD that elicited B cell memory against both the target antigen and the scaffold. Thus, DNA-based VLPs enhance target antigen immunogenicity without generating off-target, scaffold-directed immune memory, thereby offering a potentially important alternative material for particulate vaccine design.

5.
ACS Nano ; 16(12): 20340-20352, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36459697

RESUMO

Three-dimensional wireframe DNA origami have programmable structural and sequence features that render them potentially suitable for prophylactic and therapeutic applications. However, their innate immunological properties, which stem from parameters including geometric shape and cytosine-phosphate-guanine dinucleotide (CpG) content, remain largely unknown. Here, we investigate the immunostimulatory properties of 3D wireframe DNA origami on the TLR9 pathway using both reporter cell lines and primary immune cells. Our results suggest that bare 3D polyhedral wireframe DNA origami induce minimal TLR9 activation despite the presence of numerous internal CpG dinucleotides. However, when displaying multivalent CpG-containing ssDNA oligos, wireframe DNA origami induce robust TLR9 pathway activation, along with enhancement of downstream immune response as evidenced by increases in Type I and Type III interferon (IFN) production in peripheral blood mononuclear cells. Further, we find that CpG copy number and spatial organization each contribute to the magnitude of TLR9 signaling and that NANP-attached CpGs do not require phosphorothioate stabilization to elicit signaling. These results suggest key design parameters for wireframe DNA origami that can be programmed to modulate immune pathway activation controllably for prophylactic and therapeutic applications.


Assuntos
Leucócitos Mononucleares , Receptor Toll-Like 9 , DNA/química , DNA de Cadeia Simples , Imunidade Inata , Oligodesoxirribonucleotídeos/farmacologia
6.
ACS Nano ; 16(6): 8954-8966, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35640255

RESUMO

Viruslike particles (VLPs) fabricated using wireframe DNA origami are emerging as promising vaccine and gene therapeutic delivery platforms due to their programmable nature that offers independent control over their size and shape, as well as their site-specific functionalization. As materials that biodegrade in the presence of endonucleases, specifically DNase I and II, their utility for the targeting of cells, tissues, and organs depends on their stability in vivo. Here, we explore minor groove binders (MGBs) as specific endonuclease inhibitors to control the degradation half-life of wireframe DNA origami. Bare, unprotected DNA-VLPs composed of two-helix edges were found to be stable in fetal bovine serum under typical cell culture conditions and in human serum for 24 h but degraded within 3 h in mouse serum, suggesting species-specific endonuclease activity. Inhibiting endonucleases by incubating DNA-VLPs with diamidine-class MGBs increased their half-lives in mouse serum by more than 12 h, corroborated by protection against isolated DNase I and II. Our stabilization strategy was compatible with the functionalization of DNA-VLPs with HIV antigens, did not interfere with B-cell signaling activity of DNA-VLPs in vitro, and was nontoxic to B-cell lines. It was further found to be compatible with multiple wireframe DNA origami geometries and edge architectures. MGB protection is complementary to existing methods such as PEGylation and chemical cross-linking, offering a facile protocol to control DNase-mediated degradation rates for in vitro and possibly in vivo therapeutic and vaccine applications.


Assuntos
Nanoestruturas , Camundongos , Humanos , Animais , Conformação de Ácido Nucleico , DNA , Endonucleases , Desoxirribonuclease I
7.
Adv Ther (Weinh) ; 4(8)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34541300

RESUMO

Adoptive T cell therapies are transforming the treatment of solid and liquid tumors, yet their widespread adoption is limited in part by the challenge of generating functional cells. T cell activation and expansion using conventional antigen-presenting cells (APCs) is unreliable due to the variable quality of donor-derived APCs. As a result, engineered approaches using nanomaterials presenting T cell activation signals are a promising alternative due to their ability to be robustly manufactured with precise control over stimulation cues. In this work, we design synthetic APCs that consist of liposomes surface-functionalized with peptide-major histocompatibility complexes (pMHC). Synthetic APCs selectively target and activate antigen-specific T cell populations to levels similar to conventional protocols using non-specific αCD3 and αCD28 antibodies without the need for costimulation signals. T cells treated with synthetic APCs produce effector cytokines and demonstrate cytotoxic activity when co-cultured with tumor cells presenting target antigen in vitro. Following adoptive transfer into tumor-bearing mice, activated cells control tumor growth and improve overall survival compared to untreated mice. Synthetic APCs could potentially be used in the future to improve the accessibility of adoptive T cell therapies by removing the need for conventional APCs during manufacturing.

8.
Anal Chem ; 91(4): 2695-2700, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30656939

RESUMO

Antigen-specific T cells are found at low frequencies in circulation but carry important diagnostic information as liquid biomarkers in numerous biomedical settings, such as monitoring the efficacy of vaccines and cancer immunotherapies. To enable detection of antigen-specific T cells with high sensitivity, we develop peptide-MHC (pMHC) tetramers labeled with DNA barcodes to detect single T cells by droplet digital PCR (ddPCR). We show that site-specific conjugation of DNA via photocleavable linkers allows barcoded tetramers to stain T cells with similar avidity compared to conventional fluorescent tetramers and efficient recovery of barcodes by light with no loss in cell viability. We design an orthogonal panel of DNA-barcoded tetramers to simultaneously detect multiple antigen-specific T cell populations, including from a mouse model of viral infection, and discriminate single cancer-specific T cells with high diagnostic sensitivity and specificity. This approach of DNA-barcoding can be broadened to encompass additional rare cells for monitoring immunological health at the single cell level.


Assuntos
Separação Celular/métodos , DNA/análise , Antígeno HLA-A2/química , Peptídeos/química , Linfócitos T/química , Animais , Antígenos Virais/imunologia , Carbocianinas/química , DNA/química , DNA/efeitos da radiação , Feminino , Corantes Fluorescentes/química , Vírus da Coriomeningite Linfocítica/química , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Reação em Cadeia da Polimerase/métodos , Coloração e Rotulagem/métodos , Linfócitos T/imunologia , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...