Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Neurosci ; 15(4): 735-744, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38324770

RESUMO

Age-related macular degeneration (AMD) is a complex disease in which inflammation is implicated as a key factor but the precise molecular mechanisms are poorly understood. AMD lesions contain an excess of the pro-inflammatory S100A9 protein, but its retinal significance was yet unexplored. S100A9 was shown to be intrinsically amyloidogenic in vitro and in vivo. Here, we hypothesized that the retinal effects of S100A9 are related to its supramolecular conformation. ARPE-19 cultures were treated with native dimeric and fibrillar S100A9 preparations, and cell viability was determined. Wild-type rats were treated intravitreally with the S100A9 solutions in the right eye and with the vehicle in the left. Retinal function was assessed longitudinally by electroretinography (ERG), comparing the amplitudes and configurations for each intervention. Native S100A9 had no impact on cellular viability in vitro or on the retinal function in vivo. Despite dispersed intracellular uptake, fibrillar S100A9 did not decrease ARPE-19 cell viability. In contrast, S100A9 fibrils impaired retinal function in vivo following intravitreal injection in rats. Intriguingly, low-dose fibrillar S100A9 induced contrasting in vivo effects, significantly increasing the ERG responses, particularly over 14 days postinjection. The retinal effects of S100A9 were further characterized by glial and microglial cell activation. We provide the first indication for the retinal effects of S100A9, showing that its fibrils inflicted retinal dysfunction and glial activation in vivo, while low dose of the same assemblies resulted in an unpredicted enhancement of the ERG amplitudes. These nonlinear responses highlight the consequences of self-assembly of S100A9 and provide insight into its pathophysiological and possibly physiological roles in the retina.


Assuntos
Calgranulina B , Degeneração Macular , Ratos , Animais , Calgranulina B/metabolismo , Retina/metabolismo , Degeneração Macular/tratamento farmacológico , Degeneração Macular/metabolismo , Eletrorretinografia , Inflamação/metabolismo , Modelos Animais de Doenças
2.
Int J Mol Sci ; 22(16)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34445262

RESUMO

The amyloid cascade is central for the neurodegeneration disease pathology, including Alzheimer's and Parkinson's, and remains the focus of much current research. S100A9 protein drives the amyloid-neuroinflammatory cascade in these diseases. DOPA and cyclen-based compounds were used as amyloid modifiers and inhibitors previously, and DOPA is also used as a precursor of dopamine in Parkinson's treatment. Here, by using fluorescence titration experiments we showed that five selected ligands: DOPA-D-H-DOPA, DOPA-H-H-DOPA, DOPA-D-H, DOPA-cyclen, and H-E-cyclen, bind to S100A9 with apparent Kd in the sub-micromolar range. Ligand docking and molecular dynamic simulation showed that all compounds bind to S100A9 in more than one binding site and with different ligand mobility and H-bonds involved in each site, which all together is consistent with the apparent binding determined in fluorescence experiments. By using amyloid kinetic analysis, monitored by thioflavin-T fluorescence, and AFM imaging, we found that S100A9 co-aggregation with these compounds does not hinder amyloid formation but leads to morphological changes in the amyloid fibrils, manifested in fibril thickening. Thicker fibrils were not observed upon fibrillation of S100A9 alone and may influence the amyloid tissue propagation and modulate S100A9 amyloid assembly as part of the amyloid-neuroinflammatory cascade in neurodegenerative diseases.


Assuntos
Amiloide/química , Calgranulina B/química , Di-Hidroxifenilalanina/química , Simulação de Dinâmica Molecular , Agregados Proteicos , Humanos
3.
ACS Appl Mater Interfaces ; 13(23): 26721-26734, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34080430

RESUMO

Pro-inflammatory and amyloidogenic S100A9 protein is central to the amyloid-neuroinflammatory cascade in neurodegenerative diseases. Polyoxometalates (POMs) constitute a diverse group of nanomaterials, which showed potency in amyloid inhibition. Here, we have demonstrated that two selected nanosized niobium POMs, Nb10 and TiNb9, can act as potent inhibitors of S100A9 amyloid assembly. Kinetics analysis based on ThT fluorescence experiments showed that addition of either Nb10 or TiNb9 reduces the S100A9 amyloid formation rate and amyloid quantity. Atomic force microscopy imaging demonstrated the complete absence of long S100A9 amyloid fibrils at increasing concentrations of either POM and the presence of only round-shaped and slightly elongated aggregates. Molecular dynamics simulation revealed that both Nb10 and TiNb9 bind to native S100A9 homo-dimer by forming ionic interactions with the positively charged Lys residue-rich patches on the protein surface. The acrylamide quenching of intrinsic fluorescence showed that POM binding does not perturb the Trp 88 environment. The far and near UV circular dichroism revealed no large-scale perturbation of S100A9 secondary and tertiary structures upon POM binding. These indicate that POM binding involves only local conformational changes in the binding sites. By using intrinsic and 8-anilino-1-naphthalene sulfonate fluorescence titration experiments, we found that POMs bind to S100A9 with a Kd of ca. 2.5 µM. We suggest that the region, including Lys 50 to Lys 54 and characterized by high amyloid propensity, could be the key sequences involved in S1009 amyloid self-assembly. The inhibition and complete hindering of S100A9 amyloid pathways may be used in the therapeutic applications targeting the amyloid-neuroinflammatory cascade in neurodegenerative diseases.


Assuntos
Amiloide/antagonistas & inibidores , Calgranulina B/química , Calgranulina B/metabolismo , Doenças Neurodegenerativas , Compostos de Tungstênio/farmacologia , Humanos , Conformação Proteica
4.
EMBO J ; 34(18): 2363-82, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26303906

RESUMO

The aggresome is an organelle that recruits aggregated proteins for storage and degradation. We performed an siRNA screen for proteins involved in aggresome formation and identified novel mammalian AAA+ protein disaggregases RuvbL1 and RuvbL2. Depletion of RuvbL1 or RuvbL2 suppressed aggresome formation and caused buildup of multiple cytoplasmic aggregates. Similarly, downregulation of RuvbL orthologs in yeast suppressed the formation of an aggresome-like body and enhanced the aggregate toxicity. In contrast, their overproduction enhanced the resistance to proteotoxic stress independently of chaperone Hsp104. Mammalian RuvbL associated with the aggresome, and the aggresome substrate synphilin-1 interacted directly with the RuvbL1 barrel-like structure near the opening of the central channel. Importantly, polypeptides with unfolded structures and amyloid fibrils stimulated the ATPase activity of RuvbL. Finally, disassembly of protein aggregates was promoted by RuvbL. These data indicate that RuvbL complexes serve as chaperones in protein disaggregation.


Assuntos
Amiloide/metabolismo , Proteínas de Transporte/metabolismo , DNA Helicases/metabolismo , Organelas/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Amiloide/genética , Proteínas de Transporte/genética , DNA Helicases/genética , Células HEK293 , Células HeLa , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Organelas/genética , Organelas/patologia
5.
PLoS Genet ; 9(10): e1003920, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24204320

RESUMO

DNA mismatch repair greatly increases genome fidelity by recognizing and removing replication errors. In order to understand how this fidelity is maintained, it is important to uncover the relative specificities of the different components of mismatch repair. There are two major mispair recognition complexes in eukaryotes that are homologues of bacterial MutS proteins, MutSα and MutSß, with MutSα recognizing base-base mismatches and small loop mispairs and MutSß recognizing larger loop mispairs. Upon recognition of a mispair, the MutS complexes then interact with homologues of the bacterial MutL protein. Loops formed on the primer strand during replication lead to insertion mutations, whereas loops on the template strand lead to deletions. We show here in yeast, using oligonucleotide transformation, that MutSα has a strong bias toward repair of insertion loops, while MutSß has an even stronger bias toward repair of deletion loops. Our results suggest that this bias in repair is due to the different interactions of the MutS complexes with the MutL complexes. Two mutants of MutLα, pms1-G882E and pms1-H888R, repair deletion mispairs but not insertion mispairs. Moreover, we find that a different MutL complex, MutLγ, is extremely important, but not sufficient, for deletion repair in the presence of either MutLα mutation. MutSß is present in many eukaryotic organisms, but not in prokaryotes. We suggest that the biased repair of deletion mispairs may reflect a critical eukaryotic function of MutSß in mismatch repair.


Assuntos
Proteínas de Transporte/genética , Reparo de Erro de Pareamento de DNA/genética , Mutação INDEL/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Proteínas de Saccharomyces cerevisiae/genética , Dano ao DNA/genética , Replicação do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas MutL , Mutação , Oligonucleotídeos/genética , Saccharomyces cerevisiae/genética , Transformação Genética
6.
Proc Natl Acad Sci U S A ; 109(16): 6153-8, 2012 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-22474380

RESUMO

Mismatch repair (MMR) is a major DNA repair pathway in cells from all branches of life that removes replication errors in a strand-specific manner, such that mismatched nucleotides are preferentially removed from the newly replicated strand of DNA. Here we demonstrate a role for MMR in helping create new phenotypes in nondividing cells. We show that mispairs in yeast that escape MMR during replication can later be subject to MMR activity in a replication strand-independent manner in nondividing cells, resulting in either fully wild-type or mutant DNA sequence. In one case, this activity is responsible for what appears to be adaptive mutation. This replication strand-independent MMR activity could contribute to the formation of tumors arising in nondividing cells and could also contribute to mutagenesis observed during somatic hypermutation of Ig genes.


Assuntos
Reparo de Erro de Pareamento de DNA/genética , Mutação , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Sequência de Bases , Dano ao DNA , Replicação do DNA/genética , DNA Fúngico/genética , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Genótipo , Modelos Genéticos , Mutagênese , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Triptofano Sintase/genética , Triptofano Sintase/metabolismo
7.
PLoS Genet ; 8(4): e1002634, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22536159

RESUMO

Polyglutamine expansion causes diseases in humans and other mammals. One example is Huntington's disease. Fragments of human huntingtin protein having an expanded polyglutamine stretch form aggregates and cause cytotoxicity in yeast cells bearing endogenous QN-rich proteins in the aggregated (prion) form. Attachment of the proline(P)-rich region targets polyglutamines to the large perinuclear deposit (aggresome). Aggresome formation ameliorates polyglutamine cytotoxicity in cells containing only the prion form of Rnq1 protein. Here we show that expanded polyglutamines both with (poly-QP) or without (poly-Q) a P-rich stretch remain toxic in the presence of the prion form of translation termination (release) factor Sup35 (eRF3). A Sup35 derivative that lacks the QN-rich domain and is unable to be incorporated into aggregates counteracts cytotoxicity, suggesting that toxicity is due to Sup35 sequestration. Increase in the levels of another release factor, Sup45 (eRF1), due to either disomy by chromosome II containing the SUP45 gene or to introduction of the SUP45-bearing plasmid counteracts poly-Q or poly-QP toxicity in the presence of the Sup35 prion. Protein analysis confirms that polyglutamines alter aggregation patterns of Sup35 and promote aggregation of Sup45, while excess Sup45 counteracts these effects. Our data show that one and the same mode of polyglutamine aggregation could be cytoprotective or cytotoxic, depending on the composition of other aggregates in a eukaryotic cell, and demonstrate that other aggregates expand the range of proteins that are susceptible to sequestration by polyglutamines.


Assuntos
Dosagem de Genes , Fatores de Terminação de Peptídeos , Peptídeos , Príons/genética , Proteínas de Saccharomyces cerevisiae , Epigênese Genética , Humanos , Proteína Huntingtina , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fatores de Terminação de Peptídeos/genética , Fatores de Terminação de Peptídeos/metabolismo , Peptídeos/genética , Peptídeos/toxicidade , Príons/química , Príons/metabolismo , Ligação Proteica/genética , Biossíntese de Proteínas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Deleção de Sequência
8.
Protein Pept Lett ; 16(6): 598-605, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19519517

RESUMO

High-ordered aggregates (amyloids) may disrupt cell functions, cause toxicity at certain conditions and provide a basis for self-perpetuated, protein-based infectious heritable agents (prions). Heat shock proteins acting as molecular chaperones counteract protein aggregation and influence amyloid propagation. The yeast Hsp104/Hsp70/Hsp40 chaperone complex plays a crucial role in interactions with both ordered and unordered aggregates. The main focus of this review will be on the Hsp104 chaperone, a molecular "disaggregase".


Assuntos
Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/fisiologia , Príons/química , Príons/fisiologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/fisiologia , Amiloide
9.
FASEB J ; 23(2): 451-63, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18854435

RESUMO

In mammalian cells, abnormal proteins that escape proteasome-dependent degradation form small aggregates that can be transported into a centrosome-associated structure, called an aggresome. Here we demonstrate that in yeast a single aggregate formed by the huntingtin exon 1 with an expanded polyglutamine domain (103QP) represents a bona fide aggresome that colocalizes with the spindle pole body (the yeast centrosome) in a microtubule-dependent fashion. Since a polypeptide lacking the proline-rich region (P-region) of huntingtin (103Q) cannot form aggresomes, this domain serves as an aggresome-targeting signal. Coexpression of 103Q with 25QP, a soluble polypeptide that also carries the P-region, led to the recruitment of 103Q to the aggresome via formation of hetero-oligomers, indicating the aggresome targeting in trans. To identify additional factors involved in aggresome formation and targeting, we purified 103QP aggresomes and 103Q aggregates and identified the associated proteins using mass spectrometry. Among the aggresome-associated proteins we identified, Cdc48 (VCP/p97) and its cofactors, Ufd1 and Nlp4, were shown genetically to be essential for aggresome formation. The 14-3-3 protein, Bmh1, was also found to be critical for aggresome targeting. Its interaction with the huntingtin fragment and its role in aggresome formation required the huntingtin N-terminal N17 domain, adjacent to the polyQ domain. Accordingly, the huntingtin N17 domain, along with the P-region, plays a role in aggresome targeting. We also present direct genetic evidence for the protective role of aggresomes by demonstrating genetically that aggresome targeting of polyglutamine polypeptides relieves their toxicity.


Assuntos
Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Dados de Sequência Molecular , Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato , Ubiquitinação , Proteína com Valosina
10.
Prion ; 1(4): 217-22, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-19164915

RESUMO

Exposure to high temperature or other stresses induces a synthesis of heat shock proteins. Many of these proteins are molecular chaperones, and some of them help cells to cope with heat-induced denaturation and aggregation of other proteins. In the last decade, chaperones have received increased attention in connection with their role in maintenance and propagation of the Saccharomyces cerevisiae prions, infectious or heritable agents transmitted at the protein level. Recent data suggest that functioning of the chaperones in reactivation of heat-damaged proteins and in propagation of prions is based on the same molecular mechanisms but may lead to different consequences depending on the type of aggregate. In both cases the concerted and balanced action of "chaperones' team," including Hsp104, Hsp70, Hsp40 and possibly other proteins, determines whether a misfolded protein is to be incorporated into an aggregate, rescued to the native state or targeted for degradation.


Assuntos
Proteínas de Choque Térmico/metabolismo , Príons/metabolismo , Dobramento de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Temperatura Alta
11.
Yeast ; 22(13): 1037-47, 2005 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-16200504

RESUMO

Human urokinase-type plasminogen activator (uPA) is poorly secreted and aggregates in the endoplasmic reticulum of yeast cells due to inefficient folding. A screen for Hansenula polymorpha mutants with improved uPA secretion revealed a gene encoding a homologue of the Saccharomyces cerevisiae protein-O-mannosyltransferase Pmt1p. Expression of the H. polymorpha PMT1 gene (HpPMT1) abolished temperature sensitivity of the S. cerevisiae pmt1 pmt2 double mutant. As in S. cerevisiae, inactivation of the HpPMT1 gene affected electrophoretic mobility of the O-glycosylated protein, extracellular chitinase. In contrast to S. cerevisiae, disruption of HpPMT1 alone caused temperature sensitivity. Inactivation of the HpPMT1 gene decreased intracellular aggregation of uPA, suggesting that enhanced secretion of uPA was due to improvement of its folding in the endoplasmic reticulum. Unlike most of the endoplasmic reticulum membrane proteins, HpPmt1p possesses the C-terminal KDEL retention signal.


Assuntos
Regulação Fúngica da Expressão Gênica , Manosiltransferases/genética , Mutação , Pichia/enzimologia , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Sequência de Aminoácidos , Retículo Endoplasmático , Glicosilação , Humanos , Manosiltransferases/metabolismo , Dados de Sequência Molecular , Pichia/genética , Pichia/metabolismo , Dobramento de Proteína , Análise de Sequência de DNA
12.
Eukaryot Cell ; 3(1): 52-60, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14871936

RESUMO

In eukaryotic cells, COPI vesicles retrieve resident proteins to the endoplasmic reticulum and mediate intra-Golgi transport. Here, we studied the Hansenula polymorpha homologue of the Saccharomyces cerevisiae RET1 gene, encoding alpha-COP, a subunit of the COPI protein complex. H. polymorpha ret1 mutants, which expressed truncated alpha-COP lacking more than 300 C-terminal amino acids, manifested an enhanced ability to secrete human urokinase-type plasminogen activator (uPA) and an inability to grow with a shortage of Ca2+ ions, whereas a lack of alpha-COP expression was lethal. The alpha-COP defect also caused alteration of intracellular transport of the glycosylphosphatidylinositol-anchored protein Gas1p, secretion of abnormal uPA forms, and reductions in the levels of Pmr1p, a Golgi Ca2+-ATPase. Overexpression of Pmr1p suppressed some ret1 mutant phenotypes, namely, Ca2+ dependence and enhanced uPA secretion. The role of COPI-dependent vesicular transport in cellular Ca2+ homeostasis is discussed.


Assuntos
Cálcio/metabolismo , Proteína Coatomer/metabolismo , Pichia/metabolismo , Sequência de Aminoácidos , Transporte Biológico , Western Blotting , ATPases Transportadoras de Cálcio/metabolismo , Clonagem Molecular , Retículo Endoplasmático/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Complexo de Golgi/enzimologia , Complexo de Golgi/metabolismo , Humanos , Immunoblotting , Glicoproteínas de Membrana/metabolismo , Modelos Genéticos , Chaperonas Moleculares , Dados de Sequência Molecular , Mutação , Fenótipo , Plasmídeos/metabolismo , Estrutura Terciária de Proteína , Proteínas/metabolismo , RNA/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
13.
BMC Mol Biol ; 3: 15, 2002 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-12366865

RESUMO

BACKGROUND: Secretion of recombinant proteins in yeast can be affected by their improper folding in the endoplasmic reticulum and subsequent elimination of the misfolded molecules via the endoplasmic reticulum associated protein degradation pathway. Recombinant proteins can also be degraded by the vacuolar protease complex. Human urokinase type plasminogen activator (uPA) is poorly secreted by yeast but the mechanisms interfering with its secretion are largely unknown. RESULTS: We show that in Hansenula polymorpha overexpression worsens uPA secretion and stimulates its intracellular aggregation. The absence of the Golgi modifications in accumulated uPA suggests that aggregation occurs within the endoplasmic reticulum. Deletion analysis has shown that the N-terminal domains were responsible for poor uPA secretion and propensity to aggregate. Mutation abolishing N-glycosylation decreased the efficiency of uPA secretion and increased its aggregation degree. Retention of uPA in the endoplasmic reticulum stimulates its aggregation. CONCLUSIONS: The data obtained demonstrate that defect of uPA secretion in yeast is related to its retention in the endoplasmic reticulum. Accumulation of uPA within the endoplasmic reticulum disturbs its proper folding and leads to formation of high molecular weight aggregates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...