Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 11(3): e1004060, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25742003

RESUMO

Intelligence is our ability to learn appropriate responses to new stimuli and situations. Neurons in association cortex are thought to be essential for this ability. During learning these neurons become tuned to relevant features and start to represent them with persistent activity during memory delays. This learning process is not well understood. Here we develop a biologically plausible learning scheme that explains how trial-and-error learning induces neuronal selectivity and working memory representations for task-relevant information. We propose that the response selection stage sends attentional feedback signals to earlier processing levels, forming synaptic tags at those connections responsible for the stimulus-response mapping. Globally released neuromodulators then interact with tagged synapses to determine their plasticity. The resulting learning rule endows neural networks with the capacity to create new working memory representations of task relevant information as persistent activity. It is remarkably generic: it explains how association neurons learn to store task-relevant information for linear as well as non-linear stimulus-response mappings, how they become tuned to category boundaries or analog variables, depending on the task demands, and how they learn to integrate probabilistic evidence for perceptual decisions.


Assuntos
Atenção/fisiologia , Memória de Curto Prazo/fisiologia , Modelos Neurológicos , Sinapses/fisiologia , Animais , Biologia Computacional , Retroalimentação Sensorial/fisiologia , Haplorrinos , Modelos Estatísticos , Neurônios/fisiologia , Movimentos Sacádicos/fisiologia , Análise e Desempenho de Tarefas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...