Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 642, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245524

RESUMO

The ability to leverage antibodies to agonize disease relevant biological pathways has tremendous potential for clinical investigation. Yet while antibodies have been successful as antagonists, immune mediators, and targeting agents, they are not readily effective at recapitulating the biology of natural ligands. Among the important determinants of antibody agonist activity is the geometry of target receptor engagement. Here, we describe an engineering approach inspired by a naturally occurring Fab-Fab homotypic interaction that constrains IgG in a unique i-shaped conformation. i-shaped antibody (iAb) engineering enables potent intrinsic agonism of five tumor necrosis factor receptor superfamily (TNFRSF) targets. When applied to bispecific antibodies against the heterodimeric IL-2 receptor pair, constrained bispecific IgG formats recapitulate IL-2 agonist activity. iAb engineering provides a tool to tune agonist antibody function and this work provides a framework for the development of intrinsic antibody agonists with the potential for generalization across broad receptor classes.


Assuntos
Anticorpos Biespecíficos , Receptores do Fator de Necrose Tumoral , Imunoglobulina G/genética , Engenharia de Proteínas
2.
Nat Chem ; 15(11): 1607-1615, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37563326

RESUMO

The photoisomerization reaction of a fluorescent protein chromophore occurs on the ultrafast timescale. The structural dynamics that result from femtosecond optical excitation have contributions from vibrational and electronic processes and from reaction dynamics that involve the crossing through a conical intersection. The creation and progression of the ultrafast structural dynamics strongly depends on optical and molecular parameters. When using X-ray crystallography as a probe of ultrafast dynamics, the origin of the observed nuclear motions is not known. Now, high-resolution pump-probe X-ray crystallography reveals complex sub-ångström, ultrafast motions and hydrogen-bonding rearrangements in the active site of a fluorescent protein. However, we demonstrate that the measured motions are not part of the photoisomerization reaction but instead arise from impulsively driven coherent vibrational processes in the electronic ground state. A coherent-control experiment using a two-colour and two-pulse optical excitation strongly amplifies the X-ray crystallographic difference density, while it fully depletes the photoisomerization process. A coherent control mechanism was tested and confirmed the wave packets assignment.


Assuntos
Rodopsina , Vibração , Movimento (Física) , Ligação de Hidrogênio
3.
J Am Chem Soc ; 145(29): 15796-15808, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37418747

RESUMO

Chromophore cis/trans photoisomerization is a fundamental process in chemistry and in the activation of many photosensitive proteins. A major task is understanding the effect of the protein environment on the efficiency and direction of this reaction compared to what is observed in the gas and solution phases. In this study, we set out to visualize the hula twist (HT) mechanism in a fluorescent protein, which is hypothesized to be the preferred mechanism in a spatially constrained binding pocket. We use a chlorine substituent to break the twofold symmetry of the embedded phenolic group of the chromophore and unambiguously identify the HT primary photoproduct. Through serial femtosecond crystallography, we then track the photoreaction from femtoseconds to the microsecond regime. We observe signals for the photoisomerization of the chromophore as early as 300 fs, obtaining the first experimental structural evidence of the HT mechanism in a protein on its femtosecond-to-picosecond timescale. We are then able to follow how chromophore isomerization and twisting lead to secondary structure rearrangements of the protein ß-barrel across the time window of our measurements.


Assuntos
Corantes , Proteínas , Cristalografia , Estrutura Secundária de Proteína
4.
J Biol Chem ; 299(5): 104685, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37031819

RESUMO

The exquisite specificity, natural biological functions, and favorable development properties of antibodies make them highly effective agents as drugs. Monoclonal antibodies are particularly strong as inhibitors of systemically accessible targets where trough-level concentrations can sustain full target occupancy. Yet beyond this pharmacologic wheelhouse, antibodies perform suboptimally for targets of high abundance and those not easily accessible from circulation. Fundamentally, this restraint on broader application is due largely to the stoichiometric nature of their activity-one drug molecule is generally able to inhibit a maximum of two target molecules at a time. Enzymes in contrast are able to catalytically turnover multiple substrates, making them a natural sub-stoichiometric solution for targets of high abundance or in poorly accessible sites of action. However, enzymes have their own limitations as drugs, including, in particular, the polypharmacology and broad specificity often seen with native enzymes. In this study, we introduce antibody-guided proteolytic enzymes to enable selective sub-stoichiometric turnover of therapeutic targets. We demonstrate that antibody-mediated substrate targeting can enhance enzyme activity and specificity, with proof of concept for two challenging target proteins, amyloid-ß and immunoglobulin G. This work advances a new biotherapeutic platform that combines the favorable properties of antibodies and proteolytic enzymes to more effectively suppress high-bar therapeutic targets.


Assuntos
Anticorpos Monoclonais , Terapia Biológica , Endopeptidases , Peptídeo Hidrolases , Imunoglobulina G , Peptídeo Hidrolases/metabolismo , Terapia Biológica/métodos
5.
J Phys Chem B ; 127(1): 85-94, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36538691

RESUMO

The C≡C stretching frequencies of terminal alkynes appear in the "clear" window of vibrational spectra, so they are attractive and increasingly popular as site-specific probes in complicated biological systems like proteins, cells, and tissues. In this work, we collected infrared (IR) absorption and Raman scattering spectra of model compounds, artificial amino acids, and model proteins that contain terminal alkyne groups, and we used our results to draw conclusions about the signal strength and sensitivity to the local environment of both aliphatic and aromatic terminal alkyne C≡C stretching bands. While the IR bands of alkynyl model compounds displayed surprisingly broad solvatochromism, their absorptions were weak enough that alkynes can be ruled out as effective IR probes. The same solvatochromism was observed in model compounds' Raman spectra, and comparisons to published empirical solvent scales (including a linear regression against four meta-aggregated solvent parameters) suggested that the alkyne C≡C stretching frequency mainly reports on local electronic interactions (i.e., short-range electron donor-acceptor interactions) with solvent molecules and neighboring functional groups. The strong solvatochromism observed here for alkyne stretching bands introduces an important consideration for Raman imaging studies based on these signals. Raman signals for alkynes (especially those that are π-conjugated) can be exceptionally strong and should permit alkynyl Raman signals to function as probes at very low concentrations, as compared to other widely used vibrational probe groups like azides and nitriles. We incorporated homopropargyl glycine into a transmembrane helical peptide via peptide synthesis, and we installed p-ethynylphenylalanine into the interior of the Escherichia coli fatty acid acyl carrier protein using a genetic code expansion technique. The Raman spectra from each of these test systems indicate that alkynyl C≡C bands can act as effective and unique probes of their local biomolecular environments. We provide guidance for the best possible future uses of alkynes as solvatochromic Raman probes, and while empirical explanations of the alkyne solvatochromism are offered, open questions about its physical basis are enunciated.


Assuntos
Alcinos , Análise Espectral Raman , Alcinos/química , Análise Espectral Raman/métodos , Solventes
6.
Comput Struct Biotechnol J ; 20: 4952-4968, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147680

RESUMO

Antibodies are fundamental effectors of humoral immunity, and have become a highly successful class of therapeutics. There is increasing evidence that antibodies utilize transient homotypic interactions to enhance function, and elucidation of such interactions can provide insights into their biology and new opportunities for their optimization as drugs. Yet the transitory nature of weak interactions makes them difficult to investigate. Capitalizing on their rich structural data and high conservation, we have characterized all the ways that antibody fragment antigen-binding (Fab) regions interact crystallographically. This approach led to the discovery of previously unrealized interfaces between antibodies. While diverse interactions exist, ß-sheet dimers and variable-constant elbow dimers are recurrent motifs. Disulfide engineering enabled interactions to be trapped and investigated structurally and functionally, providing experimental validation of the interfaces and illustrating their potential for optimization. This work provides first insight into previously undiscovered oligomeric interactions between antibodies, and enables new opportunities for their biotherapeutic optimization.

7.
Proc Natl Acad Sci U S A ; 119(23): e2201562119, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35653561

RESUMO

The utilization of avidity to drive and tune functional responses is fundamental to antibody biology and often underlies the mechanisms of action of monoclonal antibody drugs. There is increasing evidence that antibodies leverage homotypic interactions to enhance avidity, often through weak transient interfaces whereby self-association is coupled with target binding. Here, we comprehensively map the Fab­Fab interfaces of antibodies targeting DR5 and 4-1BB that utilize homotypic interaction to promote receptor activation and demonstrate that both antibodies have similar self-association determinants primarily encoded within a germline light chain complementarity determining region 2 (CDRL2). We further show that these determinants can be grafted onto antibodies of distinct target specificity to substantially enhance their activity. An expanded characterization of all unique germline CDRL2 sequences reveals additional self-association sequence determinants encoded in the human germline repertoire. Our results suggest that this phenomenon is unique to CDRL2, and is correlated with the less frequent antigen interaction and lower somatic hypermutation associated with this loop. This work reveals a previously unknown avidity mechanism in antibody native biology that can be exploited for the engineering of biotherapeutics.


Assuntos
Afinidade de Anticorpos , Regiões Determinantes de Complementaridade , Células Germinativas , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/genética , Tratamento Farmacológico , Fragmentos Fab das Imunoglobulinas
8.
J Am Chem Soc ; 144(9): 3968-3978, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35200017

RESUMO

The past decades have witnessed an explosion of de novo protein designs with a remarkable range of scaffolds. It remains challenging, however, to design catalytic functions that are competitive with naturally occurring counterparts as well as biomimetic or nonbiological catalysts. Although directed evolution often offers efficient solutions, the fitness landscape remains opaque. Green fluorescent protein (GFP), which has revolutionized biological imaging and assays, is one of the most redesigned proteins. While not an enzyme in the conventional sense, GFPs feature competing excited-state decay pathways with the same steric and electrostatic origins as conventional ground-state catalysts, and they exert exquisite control over multiple reaction outcomes through the same principles. Thus, GFP is an "excited-state enzyme". Herein we show that rationally designed mutants and hybrids that contain environmental mutations and substituted chromophores provide the basis for a quantitative model and prediction that describes the influence of sterics and electrostatics on excited-state catalysis of GFPs. As both perturbations can selectively bias photoisomerization pathways, GFPs with fluorescence quantum yields (FQYs) and photoswitching characteristics tailored for specific applications could be predicted and then demonstrated. The underlying energetic landscape, readily accessible via spectroscopy for GFPs, offers an important missing link in the design of protein function that is generalizable to catalyst design.


Assuntos
Proteínas de Fluorescência Verde , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Análise Espectral , Eletricidade Estática
9.
Artigo em Inglês | MEDLINE | ID: mdl-32753830

RESUMO

Photo-induced structural rearrangements of chromophore-containing proteins are essential for various light-dependent signaling pathways and optogenetic applications. Ultrafast structural and spectroscopic methods have offered insights into these structural rearrangements across many timescales. However, questions still remain about exact mechanistic details, especially regarding photoisomerization of the chromophore within these proteins femtoseconds to picoseconds after photoexcitation. Instrumentation advancements for time-resolved crystallography and ultrafast electron diffraction provide a promising opportunity to study these reactions, but achieving enough signal-to-noise is a constant challenge. Here we present four new photoactive yellow protein constructs and one new fluorescent protein construct that contain heavy atoms either within or around the chromophore and can be expressed with high yields. Structural characterization of these constructs, most at atomic resolution, show minimal perturbation caused by the heavy atoms compared to wild-type structures. Spectroscopic studies report the effects of the heavy atom identity and location on the chromophore's photophysical properties. None of the substitutions prevent photoisomerization, although certain rates within the photocycle may be affected. Overall, these new proteins containing heavy atoms are ideal samples for state-of-theart time-resolved crystallography and electron diffraction experiments to elucidate crucial mechanistic information of photoisomerization.

10.
Science ; 367(6473): 76-79, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31896714

RESUMO

Rotation around a specific bond after photoexcitation is central to vision and emerging opportunities in optogenetics, super-resolution microscopy, and photoactive molecular devices. Competing roles for steric and electrostatic effects that govern bond-specific photoisomerization have been widely discussed, the latter originating from chromophore charge transfer upon excitation. We systematically altered the electrostatic properties of the green fluorescent protein chromophore in a photoswitchable variant, Dronpa2, using amber suppression to introduce electron-donating and electron-withdrawing groups to the phenolate ring. Through analysis of the absorption (color), fluorescence quantum yield, and energy barriers to ground- and excited-state isomerization, we evaluate the contributions of sterics and electrostatics quantitatively and demonstrate how electrostatic effects bias the pathway of chromophore photoisomerization, leading to a generalized framework to guide protein design.


Assuntos
Proteínas Luminescentes/química , Proteínas Luminescentes/efeitos da radiação , Eletricidade Estática , Fluorescência , Isomerismo , Conformação Proteica/efeitos da radiação , Rotação
11.
J Am Chem Soc ; 141(39): 15504-15508, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31533429

RESUMO

Double-bond photoisomerization in molecules such as the green fluorescent protein (GFP) chromophore can occur either via a volume-demanding one-bond-flip pathway or via a volume-conserving hula-twist pathway. Understanding the factors that determine the pathway of photoisomerization would inform the rational design of photoswitchable GFPs as improved tools for super-resolution microscopy. In this communication, we reveal the photoisomerization pathway of a photoswitchable GFP, rsEGFP2, by solving crystal structures of cis and trans rsEGFP2 containing a monochlorinated chromophore. The position of the chlorine substituent in the trans state breaks the symmetry of the phenolate ring of the chromophore and allows us to distinguish the two pathways. Surprisingly, we find that the pathway depends on the arrangement of protein monomers within the crystal lattice: in a looser packing, the one-bond-flip occurs, whereas, in a tighter packing (7% smaller unit cell size), the hula-twist occurs.


Assuntos
Proteínas de Fluorescência Verde/química , Processos Fotoquímicos , Modelos Moleculares , Conformação Proteica
12.
J Am Chem Soc ; 141(38): 15250-15265, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31450887

RESUMO

Green fluorescent proteins (GFPs) have become indispensable imaging and optogenetic tools. Their absorption and emission properties can be optimized for specific applications. Currently, no unified framework exists to comprehensively describe these photophysical properties, namely the absorption maxima, emission maxima, Stokes shifts, vibronic progressions, extinction coefficients, Stark tuning rates, and spontaneous emission rates, especially one that includes the effects of the protein environment. In this work, we study the correlations among these properties from systematically tuned GFP environmental mutants and chromophore variants. Correlation plots reveal monotonic trends, suggesting that all these properties are governed by one underlying factor dependent on the chromophore's environment. By treating the anionic GFP chromophore as a mixed-valence compound existing as a superposition of two resonance forms, we argue that this underlying factor is defined as the difference in energy between the two forms, or the driving force, which is tuned by the environment. We then introduce a Marcus-Hush model with the bond length alternation vibrational mode, treating the GFP absorption band as an intervalence charge transfer band. This model explains all of the observed strong correlations among photophysical properties; related subtopics are extensively discussed in the Supporting Information. Finally, we demonstrate the model's predictive power by utilizing the additivity of the driving force. The model described here elucidates the role of the protein environment in modulating the photophysical properties of the chromophore, providing insights and limitations for designing new GFPs with desired phenotypes. We argue that this model should also be generally applicable to both biological and nonbiological polymethine dyes.


Assuntos
Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Modelos Moleculares , Estrutura Molecular , Mutação , Óptica e Fotônica , Processos Fotoquímicos
13.
Annu Rev Biophys ; 48: 19-44, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-30786230

RESUMO

Many proteins can be split into fragments that spontaneously reassemble, without covalent linkage, into a functional protein. For split green fluorescent proteins (GFPs), fragment reassembly leads to a fluorescent readout, which has been widely used to investigate protein-protein interactions. We review the scope and limitations of this approach as well as other diverse applications of split GFPs as versatile sensors, molecular glues, optogenetic tools, and platforms for photophysical studies.


Assuntos
Proteínas de Fluorescência Verde/química , Animais , Humanos
14.
J Phys Chem A ; 117(29): 5987-96, 2013 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-23451758

RESUMO

The amino acid histidine (His) has a number of unique roles that can dictate function in proteins, and these roles are typically conferred through noncovalent interactions that depend on the protonation state of His's 4-substituted imidazole ring. His's protonation state can vary near physiological pH, and a probe of His's variable protonation state and its resulting noncovalent interactions that has both high time resolution and no sample limitations could find wide use in determining the role of particular His residues in proteins. Here we use a classic deuterium exchange reaction to replace the C2-H hydrogen atom of the His imidazole ring with deuterium, leading to a unique aromatic C2-D stretching vibration whose frequency is sensitive to environmental changes across the entire imidazole ring. Using nonresonant Raman spectroscopy, we demonstrate using model compounds that the frequency of this C2-D vibration shifts by 35 cm(-1) upon changes in the His protonation state. The C2-D band is a very weak infrared absorber, so this vibration is not expected to be useful in infrared transmission experiments for proteins. Solvent-dependent Raman experiments indicate that the C2-D band of the neutral imidazole ring is sensitive to H-bonding interaction with donors and acceptors of varying strengths, suggesting that the C2-D frequency can be used to identify H-bonding partners of specific His residues. Raman spectra at varying concentrations of Cu(2+) also show the C2-D band's sensitivity to metal coordination, with differences due to changes in the coordination environment. The strong Raman signal of this band and the sampling flexibility of Raman spectroscopy suggest that this vibration could be very useful in documenting the local role of His residues in many His-containing proteins and protein assemblies.


Assuntos
Histidina/química , Prótons , Análise Espectral Raman , Ligação de Hidrogênio , Proteínas/química , Proteínas/metabolismo , Espectrofotometria Infravermelho , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...