Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Cancer Res ; 28(20): 4574-4586, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-35943291

RESUMO

PURPOSE: DNMT3A mutations confer a poor prognosis in acute myeloid leukemia (AML), but the molecular mechanisms downstream of DNMT3A mutations in disease pathogenesis are not completely understood, limiting targeted therapeutic options. The role of miRNA in DNMT3A-mutant AML pathogenesis is understudied. EXPERIMENTAL DESIGN: DNA methylation and miRNA expression was evaluated in human AML patient samples and in Dnmt3a/Flt3-mutant AML mice. The treatment efficacy and molecular mechanisms of TLR7/8-directed therapies on DNMT3A-mutant AML were evaluated in vitro on human AML patient samples and in Dnmt3a/Flt3-mutant AML mice. RESULTS: miR-196b is hypomethylated and overexpressed in DNMT3A-mutant AML and is associated with poor patient outcome. miR-196b overexpression in DNMT3A-mutant AML is important to maintain an immature state and leukemic cell survival through repression of TLR signaling. The TLR7/8 agonist resiquimod induces dendritic cell-like differentiation with costimulatory molecule expression in DNMT3A-mutant AML cells and provides a survival benefit to Dnmt3a/Flt3-mutant AML mice. The small molecule bryostatin-1 augments resiquimod-mediated AML growth inhibition and differentiation. CONCLUSIONS: DNMT3A loss-of-function mutations cause miRNA locus-specific hypomethylation and overexpression important for mutant DNMT3A-mediated pathogenesis and clinical outcomes. Specifically, the overexpression of miR-196b in DNMT3A-mutant AML creates a novel therapeutic vulnerability by controlling sensitivity to TLR7/8-directed therapies.


Assuntos
Leucemia Mieloide Aguda , MicroRNAs , Animais , Briostatinas/uso terapêutico , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Metilases de Modificação do DNA/genética , Humanos , Imunidade Inata , Leucemia Mieloide Aguda/tratamento farmacológico , Camundongos , MicroRNAs/genética , MicroRNAs/uso terapêutico , Mutação , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/uso terapêutico
2.
Curr Opin Hematol ; 28(1): 64-70, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33186150

RESUMO

PURPOSE OF REVIEW: Clonal heterogeneity is a significant obstacle to successful treatment of patients with acute myeloid leukemia (AML). Here, we review new advances in the understanding of genetic heterogeneity in AML using single-cell DNA-sequencing technology. RECENT FINDINGS: New genomics and immunologic discovery tools have provided single-cell resolution maps of the clonal architecture of AML. The use of these technologies reveals the mutational landscape of AML at diagnosis, during treatment, and at relapse has an enormous degree of clonal complexity and diversity that is poised to adapt and evolve under environmental pressures. SUMMARY: AML is a complex ecosystem of competing and cooperating clones undergoing constant evolution and selection.


Assuntos
Evolução Clonal , Heterogeneidade Genética , Leucemia Mieloide Aguda/genética , Animais , Análise Mutacional de DNA , Humanos , Mutação , Análise de Sequência de RNA , Análise de Célula Única
3.
FASEB J ; 33(3): 3291-3303, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30423261

RESUMO

The RNA-binding protein LIN28 is known to regulate cell fate, tissue growth, and pluripotency; however, a unified understanding of its role at the cellular level has not been achieved. Here, we address its developmental activity in mammalian postnatal neurogenesis. Constitutive expression of LIN28 in progenitor cells of the mouse subventricular zone (SVZ) caused several distinct effects: 1) the number of differentiated neurons in the olfactory bulb was dramatically reduced, whereas the relative abundance of 2 neuronal subtypes was significantly altered, 2) the population of proliferating neural progenitors in the SVZ was reduced, whereas the proportion of neuroblasts was increased, and 3) the number of astrocytes was reduced, occasionally causing them to appear early. Thus, LIN28 acts at a poststem cell/predifferentiation step, and its continuous expression caused a precocious phenotype unlike in other experimental systems. Furthermore, for the first time in a vertebrate system, we separate the majority of the biologic role of LIN28 from its known activity of blocking the microRNA let-7 by using a circular RNA sponge. We find that although LIN28 has a multifaceted role in the number and types of cells produced during postnatal neurogenesis, it appears that its action through let-7 is responsible for only a fraction of these effects.-Romer-Seibert, J. S., Hartman, N. W., Moss, E. G. The RNA-binding protein LIN28 controls progenitor and neuronal cell fate during postnatal neurogenesis.


Assuntos
Neurogênese/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Proteínas de Ligação a RNA/metabolismo , Envelhecimento/genética , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Contagem de Células , Diferenciação Celular , Linhagem Celular , Regulação da Expressão Gênica no Desenvolvimento , Ventrículos Laterais/citologia , Ventrículos Laterais/metabolismo , Camundongos , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , MicroRNAs/metabolismo , Modelos Neurológicos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Bulbo Olfatório/citologia , Bulbo Olfatório/metabolismo , RNA/genética , RNA/metabolismo , RNA Circular , Proteínas de Ligação a RNA/genética
4.
Development ; 142(14): 2397-404, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26199409

RESUMO

LIN28 is an RNA-binding protein that is best known for its roles in promoting pluripotency via regulation of the microRNA let-7. However, recent studies have uncovered new roles for LIN28 and have revealed how it functions, suggesting that it is more than just a regulator of miRNA biogenesis. Together, these findings imply a new paradigm for LIN28 - as a gatekeeper molecule that regulates the transition between pluripotency and committed cell lineages, in both let-7-dependent and let-7-independent manners. Here, we provide an overview of LIN28 function in development and disease.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Ligação a RNA/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Diferenciação Celular , Divisão Celular , Linhagem da Célula , Drosophila melanogaster/metabolismo , Perfilação da Expressão Gênica , Humanos , MicroRNAs/metabolismo , Neoplasias/metabolismo , Células-Tronco Pluripotentes/citologia , Conformação Proteica , Regeneração
5.
Wiley Interdiscip Rev Dev Biol ; 3(5): 365-77, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25124757

RESUMO

UNLABELLED: In certain instances we can witness cells controlling the sequence of their behaviors as they divide and differentiate. Striking examples occur in the nervous systems of animals where the order of differentiated cell types can be traced to internal changes in their progenitors. Elucidating the molecular mechanisms underlying such cell fate succession has been of interest for its role in generating cell type diversity and proper tissue structure. Another well-studied instance of developmental timing occurs in the larva of the nematode Caenorhabditis elegans, where the heterochronic gene pathway controls the succession of a variety of developmental events. In each case, the identification of molecules involved and the elucidation of their regulatory relationships is ongoing, but some important factors and dynamics have been revealed. In particular, certain homologs of worm heterochronic factors have been shown to work in neural development, alerting us to possible connections among these systems and the possibility of universal components of timing mechanisms. These connections also cause us to consider whether cell-intrinsic timing is more widespread, regardless of whether multiple differentiated cell types are produced in any particular order. For further resources related to this article, please visit the WIREs website. CONFLICT OF INTEREST: The authors have declared no conflicts of interest for this article.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Neurogênese , Animais , MicroRNAs/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...