Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 21(36): 20118-20131, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31482890

RESUMO

A classical interatomic potential for iron/iron-fluoride systems is developed in the framework of the charge optimized many-body (COMB) potential. This interatomic potential takes into consideration the effects of charge transfer and many-body interactions depending on the chemical environment. The potential is fitted to a training set composed of both experimental and ab initio results of the cohesive energies of several Fe and FeF2 crystal phases, the two fluorine molecules F2 and the F2-1 dissociation energy curve, the Fe and FeF2 lattice parameters of the ground state crystalline phase, and the elastic constants of the body centered cubic Fe structure. The potential is tested in an NVT ensemble for different initial structural configurations as the crystal ground state phases, F2 molecules, iron clusters, and iron nanospheres. In particular, we model the FeF2/Fe bilayer and multilayer interfaces, as well as a system of square FeF2 nanowires immersed in an iron solid. It has been shown that there exists a reordering of the atomic positions for F and Fe atoms at the interface zone; this rearrangement leads to an increase in the charge transfer among the atoms that make the interface and put forward a possible mechanism of the exchange bias origin based on asymmetric electric charge transfer in the different spin channels.

2.
Phys Chem Chem Phys ; 20(26): 17799-17808, 2018 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-29922777

RESUMO

Geometrical and vibrational characterization of magnesium hydroxide was performed using density functional theory. Four possible crystal symmetries were explored: P3[combining macron] (No. 147, point group -3), C2/m (No. 12, point group 2), P3m1 (No. 156, point group 3m) and P3[combining macron]m1 (No. 164, point group -3m) which are the currently accepted geometries found in the literature. While a lot of work has been performed on Mg(OH)2, in particular for the P3[combining macron]m1 phase, there is still a debate on the observed ground state crystal structure and the anharmonic effects of the OH vibrations on the stabilization of the crystal structure. In particular, the stable positions of hydrogen are not yet defined precisely, which have implications in the crystal symmetry, the vibrational excitations, and the thermal stability. Previous work has assigned the P3[combining macron]m1 polymorph as the low energy phase, but it has also proposed that hydrogens are disordered and they could move from their symmetric position in the P3[combining macron]m1 structure towards P3[combining macron]. In this paper, we examine the stability of the proposed phases by using different descriptors. We compare the XRD patterns with reported experimental results, and a fair agreement is found. While harmonic vibrational analysis shows that most phases have imaginary modes at 0 K, anharmonic vibrational analysis indicates that at room temperature only the C2/m phase is stabilized, whereas at higher temperatures, other phases become thermally competitive.

3.
Phys Chem Chem Phys ; 18(48): 33250-33263, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-27896347

RESUMO

In this work we report a complete structural and magnetic characterization of crystalline MnF2 under pressure obtained using first principle calculations. Density functional theory was used as the theoretical framework, within the generalized gradient approximation plus the Hubbard formalism (GGA+U) necessary to describe the strong correlations present in this material. The vibrational, the magnetic exchange couplings and the structural characterization of MnF2 in the rutile ground state structure and potential high pressure phases are reported. The quasiharmonic approximation has been used to obtain the free energy, which at the same time is used to evaluate the different structural transitions at 300 K. Based on previous theoretical and experimental studies on AF2 compounds, ten different structural candidates were considered for the high pressure regime, which led us to propose a path for the MnF2 structural transitions under pressure. As experimental pressure settings can lead to non-hydrostatic conditions, we consider hydrostatic and non-hydrostatic strains in our calculations. According to our results we found the following sequence for the pressure-driven structural phase transition in MnF2: rutile (P42/mnm) → α-PbO2-type (Pbcn) → dist. HP PdF2-type (Pbca) → dist. fluorite (I4/mmm) → cotunnite (Pnma). This structural path is correlated with other phase transitions reported on other metal rutile fluorides. In particular, we found that our proposed structural phase transition sequence offers an explanation of the different paths observed in the literature by taking into account the role of the hydrostatic conditions. In order to get a deep understanding of the modifications of MnF2 under pressure, we have analyzed the pressure evolution of the structural, vibrational, electronic, and magnetic properties for rutile and for each of the high pressure phases.

4.
Phys Rev Lett ; 116(12): 127402, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-27058100

RESUMO

We systematically investigate the excitonic dephasing of three representative transition-metal dichalcogenides, namely, MoS_{2}, MoSe_{2}, and WSe_{2} atomic monolayer thick and bulk crystals, in order to gain a proper understanding of the factors that determine the optical coherence in these materials. Coherent nonlinear optical spectroscopy and temperature dependent absorption, combined with theoretical calculations of the phonon spectra, indicate electron-phonon interactions, to be the limiting factor. Surprisingly, the excitonic dephasing, differs only slightly between atomic monolayers and high quality bulk crystals, which indicates that material imperfections are not the limiting factor in atomically thin monolayer samples. The temperature dependence of the electronic band gap and the excitonic linewidth combined with "ab initio" calculations of the phonon energies and the phonon density of states reveal a strong interaction with the E' and E" phonon modes.

5.
Phys Rev Lett ; 116(11): 117202, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-27035320

RESUMO

In this study we show from first principles calculations the possibility to induce multiferroic and magnetoelectric functional properties in the Pnma NaMnF_{3} fluoroperovskite by means of epitaxial strain engineering. Surprisingly, we found a very strong nonlinear polarization-strain coupling that drives an atypical amplification of the ferroelectric polarization for either compression or expansion of the cell. This property is associated with a noncollinear antiferromagnetic ordering, which induces a weak ferromagnetism phase and makes the strained NaMnF_{3} fluoroperovskite multiferroic. The magnetoelectric response was calculated and it was found to be composed of linear and nonlinear components with amplitudes similar to the ones of Cr_{2}O_{3}. These findings show that it is possible to move the fluoride family toward functional applications with unique responses.

6.
Sci Rep ; 6: 21790, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26905601

RESUMO

Topological crystalline insulators are a type of topological insulators whose topological surface states are protected by a crystal symmetry, thus the surface gap can be tuned by applying strain or an electric field. In this paper we predict by means of ab initio calculations a new phase of Bi which is a topological crystalline insulator characterized by a mirror Chern number nM = -2, but not a strong topological insulator. This system presents an exceptional property: at the (001) surface its Dirac cones are pinned at the surface high-symmetry points. As a consequence they are also protected by time-reversal symmetry and can survive against weak disorder even if in-plane mirror symmetry is broken at the surface. Taking advantage of this dual protection, we present a strategy to tune the band-gap based on a topological phase transition unique to this system. Since the spin-texture of these topological surface states reduces the back-scattering in carrier transport, this effective band-engineering is expected to be suitable for electronic and optoelectronic devices with reduced dissipation.

7.
J Chem Phys ; 142(21): 212422, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-26049442

RESUMO

Nonlinear two-dimensional Fourier transform (2DFT) and linear absorption spectroscopy are used to study the electronic structure and optical properties of excitons in the layered semiconductor GaSe. At the 1s exciton resonance, two peaks are identified in the absorption spectra, which are assigned to splitting of the exciton ground state into the triplet and singlet states. 2DFT spectra acquired for co-linear polarization of the excitation pulses feature an additional peak originating from coherent energy transfer between the singlet and triplet. At cross-linear polarization of the excitation pulses, the 2DFT spectra expose a new peak likely originating from bound biexcitons. The polarization dependent 2DFT spectra are well reproduced by simulations using the optical Bloch equations for a four level system, where many-body effects are included phenomenologically. Although biexciton effects are thought to be strong in this material, only moderate contributions from bound biexciton creation can be observed. The biexciton binding energy of ∼2 meV was estimated from the separation of the peaks in the 2DFT spectra. Temperature dependent absorption and 2DFT measurements, combined with "ab initio" theoretical calculations of the phonon spectra, indicate strong interaction with the A1 (') phonon mode. Excitation density dependent 2DFT measurements reveal excitation induced dephasing and provide a lower limit for the homogeneous linewidth of the excitons in the present GaSe crystal.

8.
J Chem Phys ; 142(15): 154702, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25903900

RESUMO

Density functional theory is used to investigate the reaction of oxygen with clean copper and nickel [111]-surfaces. We study several alternative adsorption sites for atomic and molecular oxygen on both surfaces. The minimal energy geometries and adsorption energies are in good agreement with previous theoretical studies and experimental data. From all considered adsorption sites, we found a new O2 molecular precursor with two possible dissociation paths on the Cu(111) surface. Cross barrier energies for the molecular oxygen dissociation have been calculated by using the climbing image nudge elastic band method, and direct comparison with experimental results is performed. Finally, the structural changes and adsorption energies of oxygen adsorbed on surface when there is a vacancy nearby the adsorption site are also considered.

9.
Science ; 341(6144): 372-6, 2013 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-23888035

RESUMO

Ultrathin passive films effectively prevent the chemical attack of stainless steel grades in corrosive environments; their stability depends on the interplay between structure and chemistry of the constituents iron, chromium, and molybdenum (Fe-Cr-Mo). Carbon (C), and eventually boron (B), are also important constituents of steels, although in small quantities. In particular, nanoscale inhomogeneities along the surface can have an impact on material failure but are still poorly understood. Addressing a stainless-type glass-forming Fe50Cr15Mo14C15B6 alloy and using a combination of complementary high-resolution analytical techniques, we relate near-atomistic insights into increasingly inhomogeneous nanostructures with time- and element-resolved dissolution behavior. The progressive elemental partitioning on the nanoscale determines the degree of passivation. A detrimental transition from Cr-controlled passivity to Mo-controlled breakdown is dissected atom by atom, demonstrating the importance of nanoscale knowledge for understanding corrosion.

10.
Phys Rev Lett ; 110(12): 129701, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-25166853

RESUMO

A Comment on the Letter by Zhang et al., Phys. Rev. Lett. 106, 156402 (2011).

11.
Phys Rev Lett ; 106(20): 205501, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21668242

RESUMO

Achieving comprehensive information on thin film lattice dynamics so far has eluded well established spectroscopic techniques. We demonstrate here the novel application of grazing incidence inelastic x-ray scattering combined with ab initio calculations to determine the complete elastic stiffness tensor, the acoustic and low-energy optic phonon dispersion relations of thin wurtzite indium nitride films. Indium nitride is an especially relevant example, due to the technological interest for optoelectronic and solar cell applications in combination with other group III nitrides.

12.
Nanotechnology ; 20(46): 465709, 2009 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-19847033

RESUMO

The mechanical behavior of a Ti(13) cluster, based on total energy mechanical quantum calculations is studied. The cluster geometry has been optimized and good agreement with previous reports has been found. Axial strain is applied along one of the principal axes and the changes on the energetic and vibrational properties of the system are followed. To characterize the cluster stability as a function of strain, vibrational frequencies and total energy have been calculated, to obtain the cluster maximum load tolerance for compression (C) and tensile (T). If the maximum load is defined through a vibrational instability, it happens to be two and half, and three times larger than when the maximum total energy is considered (C and T respectively). As a result of the induced strain along of the C(5) symmetry element, the cluster changes its point group symmetry from I(h) to D(5d), with an energy difference of 1.17 eV (for compression) and 0.33 eV (for tension) with respect to the ground state geometry. The electronic changes are also characterized, as function of the strain, by following the modifications of the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO) and changes on the total atomic population.

13.
J Chem Phys ; 127(17): 174506, 2007 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-17994826

RESUMO

Using numerical methods the authors study the annihilation reactions A+A-->0 and A+B-->0 in one and two dimensions in the presence of inertial contributions to the motion of the particles. The particles move freely following Langevin dynamics at a fixed temperature. The authors focus on the role of friction.

14.
Phys Rev Lett ; 99(16): 165504, 2007 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-17995266

RESUMO

We discuss measurements and ab initio calculations of the specific heat for crystalline bismuth, strictly speaking, a semimetal but in the temperature region accessible to us (T>2 K) acting as a semiconductor. We extend experimental data available in the literature and notice that the ab initio calculations without spin-orbit interaction exhibit a maximum at approximately 8 K, about 20% lower than the measured one. Inclusion of spin-orbit interaction decreases the discrepancy markedly: the maximum of C(T) is now only 7% larger than the measured one. Exact agreement is obtained if the strength of the spin-orbit Hamiltonian is reduced by a factor of approximately 0.9. We also discuss the dependence of the lattice parameter and the cohesive energy on spin-orbit interaction.

15.
Phys Rev Lett ; 94(21): 216102, 2005 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-16090333

RESUMO

We report a novel magnetic phenomenon consisting of the formation of helical spin configurations during the magnetization of densely packed ferromagnetic nanowires encapsulated inside carbon nanotubes. We studied the hysteresis loops when the magnetic fields are applied parallel and perpendicular to the nanotubes axes. We also performed theoretical calculations on aligned nanowire arrays that clearly indicate the creation of helical spin vortices in the hysteresis loops. The latter are caused by the presence of strong dipolar interactions among neighboring wires.

16.
Phys Rev Lett ; 94(16): 160601, 2005 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-15904204

RESUMO

Particles moving on crystalline surfaces and driven by external forces or flow fields can acquire velocities along directions that deviate from that of the external force. This effect depends upon the characteristics of the particles, most notably particle size or particle index of refraction, and can therefore be (and has been) used to sort different particles. We introduce a simple model for particles subject to thermal fluctuations and moving in appropriate potential landscapes. Numerical results are compared to recent experiments on landscapes produced with holographic optical tweezers and microfabricated technology. Our approach clarifies the relevance of different parameters, the direction and magnitude of the external force, particle size, and temperature.


Assuntos
Microfluídica/métodos , Modelos Químicos , Coloides/química , DNA/química , DNA/isolamento & purificação , Nanotecnologia/métodos , Propriedades de Superfície
17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 70(5 Pt 1): 051104, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15600587

RESUMO

We present a numerical and partially analytical study of classical particles obeying a Langevin equation that describes diffusion on a surface modeled by a two-dimensional potential. The potential may be either periodic or random. Depending on the potential and the damping, we observe superdiffusion, large-step diffusion, diffusion, and subdiffusion. Superdiffusive behavior is associated with low damping and is in most cases transient, albeit often long. Subdiffusive behavior is associated with highly damped particles in random potentials. In some cases subdiffusive behavior persists over our entire simulation and may be characterized as metastable. In any case, we stress that this rich variety of behaviors emerges naturally from an ordinary Langevin equation for a system described by ordinary canonical Maxwell-Boltzmann statistics.

18.
J Chem Phys ; 121(18): 9172-7, 2004 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-15527386

RESUMO

The spatial arrangements and physical properties of one- and two-dimensional structures, based on the amazing cubane (C(8)H(8)) molecule, are investigated in detail. In particular, we compute the electronic structure, both by first principle calculations and by semiempirical methods. The elastic and vibrational properties are evaluated as well. All these results are compared with those of the single cubane molecule, in order to elucidate the influence of dimensionality.

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 69(5 Pt 1): 051105, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15244806

RESUMO

A simple model for a dimer molecular diffusion on a crystalline surface, as a function of temperature, is presented. The dimer is formed by two particles coupled by a quadratic potential. The dimer diffusion is modeled by an overdamped Langevin equation in the presence of a two-dimensional periodic potential. Numerical simulation's results exhibit some dynamical properties observed, for example, in Si2 diffusion on a silicon [100] surface. They can be used to predict the value of the effective friction parameter. Comparison between our model and experimental measurements is presented.


Assuntos
Biofísica , Dimerização , Fenômenos Biofísicos , Cristalização , Difusão , Modelos Teóricos , Conformação Molecular , Temperatura
20.
Phys Rev Lett ; 92(25 Pt 1): 250601, 2004 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-15244990

RESUMO

We present a numerical study of classical particles diffusing on a solid surface. The particles' motion is modeled by an underdamped Langevin equation with ordinary thermal noise. The particle-surface interaction is described by a periodic or a random two-dimensional potential. The model leads to a rich variety of different transport regimes, some of which correspond to anomalous diffusion such as has recently been observed in experiments and Monte Carlo simulations. We show that this anomalous behavior is controlled by the friction coefficient and stress that it emerges naturally in a system described by ordinary canonical Maxwell-Boltzmann statistics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...