Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4926, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858371

RESUMO

Chlamydia invasion of epithelial cells is a pathogen-driven process involving two functionally distinct effectors - TarP and TmeA. They collaborate to promote robust actin dynamics at sites of entry. Here, we extend studies on the molecular mechanism of invasion by implicating the host GTPase dynamin 2 (Dyn2) in the completion of pathogen uptake. Importantly, Dyn2 function is modulated by TarP and TmeA at the levels of recruitment and activation through oligomerization, respectively. TarP-dependent recruitment requires phosphatidylinositol 3-kinase and the small GTPase Rac1, while TmeA has a post-recruitment role related to Dyn2 oligomerization. This is based on the rescue of invasion duration and efficiency in the absence of TmeA by the Dyn2 oligomer-stabilizing small molecule activator Ryngo 1-23. Notably, Dyn2 also regulated turnover of TarP- and TmeA-associated actin networks, with disrupted Dyn2 function resulting in aberrant turnover dynamics, thus establishing the interdependent functional relationship between Dyn2 and the effectors TarP and TmeA.


Assuntos
Actinas , Chlamydia trachomatis , Dinamina II , Chlamydia trachomatis/metabolismo , Chlamydia trachomatis/fisiologia , Humanos , Dinamina II/metabolismo , Dinamina II/genética , Células HeLa , Actinas/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Infecções por Chlamydia/microbiologia , Infecções por Chlamydia/metabolismo , Interações Hospedeiro-Patógeno , Células Epiteliais/microbiologia , Células Epiteliais/metabolismo
2.
Res Sq ; 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37841835

RESUMO

Chlamydia invasion of epithelial cells is a pathogen-driven process involving two functionally distinct effectors - TarP and TmeA. They collaborate to promote robust actin dynamics at sites of entry. Here, we extend studies on the molecular mechanism of invasion by implicating the host GTPase dynamin 2 (Dyn2) in the completion of pathogen uptake. Importantly, Dyn2 function is modulated by TarP and TmeA at the levels of recruitment and activation through oligomerization, respectively. TarP-dependent recruitment requires phosphatidylinositol 3-kinase and the small GTPase Rac1, while TmeA has a post-recruitment role related to Dyn2 oligomerization. This is based on the rescue of invasion duration and efficiency in the absence of TmeA by the Dyn2 oligomer-stabilizing small molecule activator Ryngo 1-23. Notably, Dyn2 also regulated turnover of TarP- and TmeA-associated actin networks, with disrupted Dyn2 function resulting in aberrant turnover dynamics, thus establishing the interdependent functional relationship between Dyn2 and the effectors TarP and TmeA.

3.
J Cell Sci ; 135(19)2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36093837

RESUMO

The obligate intracellular pathogen Chlamydia trachomatis manipulates the host actin cytoskeleton to assemble actin-rich structures that drive pathogen entry. The recent discovery of TmeA, which, like TarP, is an invasion-associated type III effector implicated in actin remodeling, raised questions regarding the nature of their functional interaction. Quantitative live-cell imaging of actin remodeling at invasion sites revealed differences in recruitment and turnover kinetics associated with the TarP and TmeA pathways, with the former accounting for most of the robust actin dynamics at invasion sites. TarP-mediated recruitment of actin nucleators, i.e. formins and the Arp2/3 complex, was crucial for rapid actin kinetics, generating a collaborative positive feedback loop that enhanced their respective actin-nucleating activities within invasion sites. In contrast, the formin Fmn1 was not recruited to invasion sites and did not collaborate with Arp2/3 within the context of TmeA-associated actin recruitment. Although the TarP-Fmn1-Arp2/3 signaling axis is responsible for the majority of actin dynamics, its inhibition had similar effects as the deletion of TmeA on invasion efficiency, consistent with the proposed model that TarP and TmeA act on different stages of the same invasion pathway.


Assuntos
Actinas , Chlamydia trachomatis , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Proteínas de Bactérias/metabolismo , Chlamydia trachomatis/metabolismo , Forminas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...