Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 13(4): 1128-1141, 2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38507598

RESUMO

Mycoplasmas are atypical bacteria with small genomes that necessitate colonization of their respective animal or plant hosts as obligate parasites, whether as pathogens, or commensals. Some can grow axenically in specialized complex media yet show only host-cell-dependent growth in cell culture, where they can survive chronically and often through interactions involving surface colonization or internalization. To develop a mycoplasma-based system to identify genes mediating such interactions, we exploited genetically tractable strains of the goat pathogen Mycoplasma mycoides (Mmc) with synthetic designer genomes representing the complete natural organism (minus virulence factors; JCVI-syn1.0) or its reduced counterpart (JCVI-syn3B) containing only those genes supporting axenic growth. By measuring growth of surviving organisms, physical association with cultured human cells (HEK-293T, HeLa), and induction of phagocytosis by human myeloid cells (dHL-60), we determined that JCVI-syn1.0 contained a set of eight genes (MMSYN1-0179 to MMSYN1-0186, dispensable for axenic growth) conferring survival, attachment, and phagocytosis phenotypes. JCVI-syn3B lacked these phenotypes, but insertion of these genes restored cell attachment and phagocytosis, although not survival. These results indicate that JCVI-syn3B may be a powerful living platform to analyze the role of specific gene sets, from any organism, on the interaction with diverse mammalian cells in culture.


Assuntos
Mycoplasma mycoides , Mycoplasma , Animais , Humanos , Mycoplasma/genética , Mycoplasma mycoides/genética , Células HeLa , Mamíferos
2.
bioRxiv ; 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37873259

RESUMO

Obesity and type 2 diabetes are at epidemic levels and a significant proportion of these patients are diagnosed with left ventricular hypertrophy. CREB R egulated T ranscription C o-activator ( CRTC ) is a key regulator of metabolism in mammalian hepatocytes, where it is activated by calcineurin (CaN) to increase expression of gluconeogenic genes. CaN is known its role in pathological cardiac hypertrophy, however, a role for CRTC in the heart has not been identified. In Drosophila , CRTC null mutants have little body fat and exhibit severe cardiac restriction, myofibrillar disorganization, cardiac fibrosis and tachycardia, all hallmarks of heart disease. Cardiac-specific knockdown of CRTC , or its coactivator CREBb , mimicked the reduced body fat and heart defects of CRTC null mutants. Comparative gene expression in CRTC loss- or gain-of-function fly hearts revealed contra-regulation of genes involved in glucose, fatty acid, and amino acid metabolism, suggesting that CRTC also acts as a metabolic switch in the heart. Among the contra-regulated genes with conserved CREB binding sites, we identified the fly ortholog of Sarcalumenin, which is a Ca 2+ -binding protein in the sarcoplasmic reticulum. Cardiac knockdown recapitulated the loss of CRTC cardiac restriction and fibrotic phenotypes, suggesting it is a downstream effector of CRTC we named thinman ( tmn ). Importantly, cardiac overexpression of either CaN or CRTC in flies caused hypertrophy that was reversed in a CRTC mutant background, suggesting CRTC mediates hypertrophy downstream of CaN, perhaps as an alternative to NFAT. CRTC novel role in the heart is likely conserved in vertebrates as knockdown in zebrafish also caused cardiac restriction, as in fl ies. These data suggest that CRTC is involved in myocardial cell maintenance and that CaN-CRTC- Sarcalumenin/ tmn signaling represents a novel and conserved pathway underlying cardiac hypertrophy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...