Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 25(6): 104374, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35633935

RESUMO

Background: A point mutation in sickle cell disease (SCD) alters one amino acid in the ß-globin subunit of hemoglobin, with resultant anemia and multiorgan damage that typically shortens lifespan by decades. Because SCD is caused by a single mutation, and hematopoietic stem cells (HSCs) can be harvested, manipulated, and returned to an individual, it is an attractive target for gene correction. Results: An optimized Cas9 ribonucleoprotein (RNP) with an ssDNA oligonucleotide donor together generated correction of at least one ß-globin allele in more than 30% of long-term engrafting human HSCs. After adopting a high-fidelity Cas9 variant, efficient correction with minimal off-target events also was observed. In vivo erythroid differentiation markedly enriches for corrected ß-globin alleles, indicating that erythroblasts carrying one or more corrected alleles have a survival advantage. Significance: These findings indicate that the sickle mutation can be corrected in autologous HSCs with an optimized protocol suitable for clinical translation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...