Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Gels ; 10(7)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39057493

RESUMO

In this study, titanium oxide TiO2 nanoparticles were produced using the sol-gel approach of green synthesis with pectin as the reducing agent. The synthetized TiO2 nanoparticles with pectin were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), visible light absorption (UV-Vis) and the BET method. The structure and morphology of the TiO2 powder were described with SEM, revealing uniform monodisperse grains with a distribution of 80% regarding sizes < 250 nm; the resulting crystal phase of synthetized TiO2 was identified as an anatase and rutile phase with a crystallinity size estimated between 27 and 40 nm. Also, the surface area was determined by nitrogen adsorption-desorption using the Brown-Emmet-Teller method, with a surface area calculated as 19.56 m2/g, typical of an IV type isotherm, indicating mesoporous NPs. UV-Vis spectra showed that sol-gel synthesis reduced the band gap from the 3.2 eV common value to 2.22 eV after estimating the optical band gap energy using the adsorption coefficient; this translates to a possible extended photo response to the visible region, improving photoactivity. In addition, the power conversion of the photoelectrode was compared based on similar assembly techniques of TiO2 electrode deposition. Quantum dot crystals were deposited ionically on the electrode surface, as two different paste formulations based on a pectin emulsifier were studied for layer deposition. The results confirm that the TiO2 paste with TiO2-synthesized powder maintained good connections between the nanocrystalline mesoporous grains and the deposited layers, with an efficiency of 1.23% with the transparent paste and 2.27% with the opaque paste. These results suggest that pectin could be used as a low-cost, functional sol-gel catalysis agent for the synthesis of controlled NPs of metal oxide. It demonstrates interesting optical properties, such as an increase in photo response, suggesting further applications to photocatalysts and biomedical features.

2.
Nanomaterials (Basel) ; 13(17)2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37686987

RESUMO

Luminescent solar concentrators (LSCs) have become an attractive way to produce green energy via their integration into buildings as photovoltaic windows. Recently, carbon quantum dots (C-QDs) have become the most studied luminescent material for the manufacture of luminescent solar concentrators due to their advantages, such as low toxicity, sustainability, and low cost. Despite the advantages of carbon quantum dots, they remain a low-efficiency material, and it is difficult to fabricate LSCs with a good performance. To address this problem, some of the research has used SiO2 nanoparticles (Nps) to produce a light-scattering effect that helps to improve the system performance. However, these studies are limited and have not been discussed in detail. In this regard, this research work was designed to evaluate the contribution of the scattering effect in different systems of carbon quantum dots used in a possible luminescent solar concentrator. To carry out this study, C-QDs and SiO2 Nps were synthesized by hydrothermal methods and the Stober method, respectively. We used different concentrations of both materials to fabricate film LSCs (10 × 10 cm2). The results show that the light scattered by the SiO2 Nps has a double contribution, in terms of light redirected towards the edges of the window and as a secondary source of excitation for the C-QDs; thus, an improvement in the performance of the LSC is achieved. The best improvement in photoluminescence is achieved when the films are composed of 20% wt carbon quantum dots and 10% wt SiO2 Nps, reaching a gain of 16% of the intensity of the light incident on the edges of the window with respect to the LSCs where only C-QDs were used.

3.
Gels ; 9(3)2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36975646

RESUMO

In this paper, a model for Cr (VI) removal and optimization was made using a novel aerogel material, chitosan-resole CS/R aerogel, where a freeze-drying and final thermal treatment was employed to fabricate the aerogel. This processing ensures a network structure and stability for the CS, despite the non-uniform ice growth promoted by this process. Morphological analysis indicated a successful aerogel elaboration process., FTIR spectroscopy corroborated the aerogel precursor's identity and ascertained chemical bonding after adsorption. Owing to the variability of formulations, the adsorption capacity was modeled and optimized using computational techniques. The response surface methodology (RSM), based on the Box-Behnken design using three levels, was used to calculate the best control parameters for the CS/R aerogel: the concentration at %vol (50-90%), the initial concentration of Cr (VI) (25-100 mg/L), and adsorption time (0.3-4 h). Analysis of variance (ANOVA) and 3D graphs reveal that the CS/R aerogel concentration and adsorption time are the main parameters that influence the initial concentration of CS/R aerogel metal-ion uptake. The developed model successfully describes the process with a correlation coefficient of R2 = 0.96 for the RSM. The model obtained was optimized to find the best material design proposal for Cr (VI) removal. Numerical optimization was used and showed superior Cr (VI) removal (94.4%) under conditions of a CS/R aerogel concentration of 87/13 %vol, with an initial concentration of Cr (VI) of 31 mg/L, and an adsorption time of 3.02 h. These results suggest that the proposed computational model can obtain an effective and viable model for CS material processing and for optimization of the uptake of this metal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA