Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med ; 66: 88-96, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31574423

RESUMO

PURPOSE: To perform a systematic and thorough assessment, using the Uncomplicated and Cancer-Free Control Probability (UCFCP) function, of a broad range of photon prostate cancer RT treatments, on the same scenario (a unique pelvic CT set). UCFCP considers, together with the probabilities of local tumour control (TCP) and deterministic (late) sequelae (NTCP), the second primary cancer risk (SPCR) due to photon and neutron peripheral doses. METHODS AND MATERIALS: Thirty-six radiotherapy plans were produced for the same CT. 6, 10, 15 and 18 MV 3DCRT, IMRT and VMAT (77.4 Gy in 43 fractions) and 6 and 10 MV SBRT (36.25 Gy in 5 fractions with flattened and FFF beams) for Elekta, Siemens and Varian Linacs plans were included. DVH and peripheral organ dosimetry were used to compute TCP, NTCP, and SPCR (the competition and LNT models) for further plan ranking. RESULTS: Biological models (and parameters) used predicted an outcome which is in agreement with epidemiological findings. SBRT plans showed the lowest SPCR and a below average NTCPrectal. High energy plans did not rank worse than the low energy ones. Intensity modulated plans were ranked above the 3D conformal techniques. CONCLUSIONS: According to UCFCP, the best plans were the10 MV SBRTs. SPCR rates were low and did not show a substantial impact on plan ranking. High energy intensity-modulated plans did not increase in excess the average of SPCR. Even more, they ranked among the best, provided that MU were efficiently managed.


Assuntos
Fótons/uso terapêutico , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional , Humanos , Masculino , Probabilidade , Neoplasias da Próstata/diagnóstico por imagem , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada , Tomografia Computadorizada por Raios X
2.
Radiat Prot Dosimetry ; 180(1-4): 80-84, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29669138

RESUMO

The proton beam produced in the Nuclear Physics line of the tandem accelerator of the Centro Nacional de Aceleradores was used to generate a neutron field. In particular, 1.912 MeV protons were used to produce well-known epithermal neutrons through the p+7Li → n+7Be reaction. The aim of the work was to characterize this field while testing the performance of a Bonner sphere spectrometer in the epithermal range. Measurements were performed in four locations at different angle (0°, 30°, 60° and 90°) from beam incidence direction in order to study the angular dependence of the field. Both a parametric and numerical unfolding methods were tested to process the counts of the central detectors and obtain the energy distribution of the neutron fluence. In addition, a Monte Carlo simulation was carried out to complete the study and provide a guess spectrum for numerical unfolding. It was found that the fluence rate and mean energy decrease as the angle from beam direction increases. Total fluence was 2.75, 1.36, 0.366 and 0.216 cm-2 per charge collected in the target at 0°, 30°, 60° and 90°, respectively. Mean energy of the field ranges from 46 to 17 keV at 0° and 60°, respectively. In all cases, given that the irradiation room is so large, the contribution of thermal neutrons to the field is small. Regarding the unfolding, the total fluences estimated by all methods were in agreement within the uncertainties.


Assuntos
Lítio/química , Nêutrons , Aceleradores de Partículas/instrumentação , Monitoramento de Radiação/instrumentação , Monitoramento de Radiação/métodos , Espectrofotometria/instrumentação , Simulação por Computador , Método de Monte Carlo , Doses de Radiação , Temperatura
3.
Phys Med Biol ; 63(8): 085017, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29509148

RESUMO

Systematic 3D mapping of out-of-field doses induced by a therapeutic proton pencil scanning beam in a 300 × 300 × 600 mm3 water phantom was performed using a set of thermoluminescence detectors (TLDs): MTS-7 (7LiF:Mg,Ti), MTS-6 (6LiF:Mg,Ti), MTS-N (natLiF:Mg,Ti) and TLD-700 (7LiF:Mg,Ti), radiophotoluminescent (RPL) detectors GD-352M and GD-302M, and polyallyldiglycol carbonate (PADC)-based (C12H18O7) track-etched detectors. Neutron and gamma-ray doses, as well as linear energy transfer distributions, were experimentally determined at 200 points within the phantom. In parallel, the Geant4 Monte Carlo code was applied to calculate neutron and gamma radiation spectra at the position of each detector. For the cubic proton target volume of 100 × 100 × 100 mm3 (spread out Bragg peak with a modulation of 100 mm) the scattered photon doses along the main axis of the phantom perpendicular to the primary beam were approximately 0.5 mGy Gy-1 at a distance of 100 mm and 0.02 mGy Gy-1 at 300 mm from the center of the target. For the neutrons, the corresponding values of dose equivalent were found to be ~0.7 and ~0.06 mSv Gy-1, respectively. The measured neutron doses were comparable with the out-of-field neutron doses from a similar experiment with 20 MV x-rays, whereas photon doses for the scanning proton beam were up to three orders of magnitude lower.


Assuntos
Imageamento Tridimensional/métodos , Imagens de Fantasmas , Terapia com Prótons/métodos , Radiometria/métodos , Dosimetria Termoluminescente/métodos , Raios gama , Humanos , Método de Monte Carlo , Nêutrons , Fótons , Prótons , Radioatividade , Cintilografia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Dosimetria Termoluminescente/instrumentação , Água
4.
Radiat Prot Dosimetry ; 180(1-4): 256-260, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29165619

RESUMO

Proton beam therapy has advantages in comparison to conventional photon radiotherapy due to the physical properties of proton beams (e.g. sharp distal fall off, adjustable range and modulation). In proton therapy, there is the possibility of sparing healthy tissue close to the target volume. This is especially important when tumours are located next to critical organs and while treating cancer in paediatric patients. On the other hand, the interactions of protons with matter result in the production of secondary radiation, mostly neutrons and gamma radiation, which deposit their energy at a distance from the target. The aim of this study was to compare the response of different passive dosimetry systems in mixed radiation field induced by proton pencil beam inside anthropomorphic phantoms representing 5 and 10 years old children. Doses were measured in different organs with thermoluminescent (MTS-7, MTS-6 and MCP-N), radiophotoluminescent (GD-352 M and GD-302M), bubble and poly-allyl-diglycol carbonate (PADC) track detectors. Results show that RPL detectors are the less sensitive for neutrons than LiF TLDs and can be applied for in-phantom dosimetry of gamma component. Neutron doses determined using track detectors, bubble detectors and pairs of MTS-7/MTS-6 are consistent within the uncertainty range. This is the first study dealing with measurements on child anthropomorphic phantoms irradiated by a pencil scanning beam technique.


Assuntos
Imagens de Fantasmas , Terapia com Prótons/instrumentação , Prótons , Radiometria/instrumentação , Dosimetria Termoluminescente/instrumentação , Algoritmos , Antropometria , Criança , Pré-Escolar , Desenho de Equipamento , Raios gama/uso terapêutico , Humanos , Método de Monte Carlo , Nêutrons , Doses de Radiação , Radiação Ionizante , Cintilografia , Dosagem Radioterapêutica
5.
Med Phys ; 43(1): 360, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26745929

RESUMO

PURPOSE: The evaluation of peripheral dose has become a relevant issue recently, in particular, the contribution of secondary neutrons. However, after the revision of the Recommendations of the International Commission on Radiological Protection, there has been a lack of experimental procedure for its evaluation. Specifically, the problem comes from the replacement of organ dose equivalent by the organ-equivalent dose, being the latter "immeasurable" by definition. Therefore, dose equivalent has to be still used although it needs the calculation of the radiation quality factor Q, which depends on the unrestricted linear energy transfer, for the specific neutron irradiation conditions. On the other hand, equivalent dose is computed through the radiation weighting factor wR, which can be easily calculated using the continuous function provided by the recommendations. The aim of the paper is to compare the dose equivalent evaluated following the definition, that is, using Q, with the values obtained by replacing the quality factor with wR. METHODS: Dose equivalents were estimated in selected points inside a phantom. Two types of medical environments were chosen for the irradiations: a photon- and a proton-therapy facility. For the estimation of dose equivalent, a poly-allyl-diglicol-carbonate-based neutron dosimeter was used for neutron fluence measurements and, additionally, Monte Carlo simulations were performed to obtain the energy spectrum of the fluence in each point. RESULTS: The main contribution to dose equivalent comes from neutrons with energy higher than 0.1 MeV, even when they represent the smallest contribution in fluence. For this range of energy, the radiation quality factor and the radiation weighting factor are approximately equal. Then, dose equivalents evaluated using both factors are compatible, with differences below 12%. CONCLUSIONS: Quality factor can be replaced by the radiation weighting factor in the evaluation of dose equivalent in radiotherapy environments simplifying the practical procedure.


Assuntos
Nêutrons/uso terapêutico , Doses de Radiação , Radioterapia/métodos , Humanos , Dosagem Radioterapêutica
6.
Med Phys ; 42(5): 2572-84, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25979049

RESUMO

PURPOSE: To characterize stray radiation around the target volume in scanning proton therapy and study the performance of active neutron monitors. METHODS: Working Group 9 of the European Radiation Dosimetry Group (EURADOS WG9-Radiation protection in medicine) carried out a large measurement campaign at the Trento Centro di Protonterapia (Trento, Italy) in order to determine the neutron spectra near the patient using two extended-range Bonner sphere spectrometry (BSS) systems. In addition, the work focused on acknowledging the performance of different commercial active dosimetry systems when measuring neutron ambient dose equivalents, H(∗)(10), at several positions inside (8 positions) and outside (3 positions) the treatment room. Detectors included three TEPCs--tissue equivalent proportional counters (Hawk type from Far West Technology, Inc.) and six rem-counters (WENDI-II, LB 6411, RadEye™ NL, a regular and an extended-range NM2B). Meanwhile, the photon component of stray radiation was deduced from the low-lineal energy transfer part of TEPC spectra or measured using a Thermo Scientific™ FH-40G survey meter. Experiments involved a water tank phantom (60 × 30 × 30 cm(3)) representing the patient that was uniformly irradiated using a 3 mm spot diameter proton pencil beam with 10 cm modulation width, 19.95 cm distal beam range, and 10 × 10 cm(2) field size. RESULTS: Neutron spectrometry around the target volume showed two main components at the thermal and fast energy ranges. The study also revealed the large dependence of the energy distribution of neutrons, and consequently of out-of-field doses, on the primary beam direction (directional emission of intranuclear cascade neutrons) and energy (spectral composition of secondary neutrons). In addition, neutron mapping within the facility was conducted and showed the highest H(∗)(10) value of ∼ 51 µSv Gy(-1); this was measured at 1.15 m along the beam axis. H(∗)(10) values significantly decreased with distance and angular position with respect to beam axis falling below 2 nSv Gy(-1) at the entrance of the maze, at the door outside the room and below detection limit in the gantry control room, and at an adjacent room (<0.1 nSv Gy(-1)). Finally, the agreement on H(∗)(10) values between all detectors showed a direct dependence on neutron spectra at the measurement position. While conventional rem-counters (LB 6411, RadEye™ NL, NM2-458) underestimated the H(∗)(10) by up to a factor of 4, Hawk TEPCs and the WENDI-II range-extended detector were found to have good performance (within 20%) even at the highest neutron fluence and energy range. Meanwhile, secondary photon dose equivalents were found to be up to five times lower than neutrons; remaining nonetheless of concern to the patient. CONCLUSIONS: Extended-range BSS, TEPCs, and the WENDI-II enable accurate measurements of stray neutrons while other rem-counters are not appropriate considering the high-energy range of neutrons involved in proton therapy.


Assuntos
Terapia com Prótons/métodos , Radiometria/métodos , Europa (Continente) , Nêutrons , Imagens de Fantasmas , Fótons , Terapia com Prótons/instrumentação , Prótons , Doses de Radiação , Radiometria/instrumentação , Análise Espectral/instrumentação , Análise Espectral/métodos , Água
7.
Med Phys ; 42(1): 276-81, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25563267

RESUMO

PURPOSE: Knowing the contribution of neutron to collateral effects in treatments is both a complex and a mandatory task. This work aims to present an operative procedure for neutron estimates in any facility using a neutron digital detector. METHODS: The authors' previous work established a linear relationship between the total second cancer risk due to neutrons (TR(n)) and the number of MU of the treatment. Given that the digital detector also presents linearity with MU, its response can be used to determine the TR(n) per unit MU, denoted as m, normally associated to a generic Linac model and radiotherapy facility. Thus, from the number of MU of each patient treatment, the associated risk can be estimated. The feasibility of the procedure was tested by applying it in eight facilities; patients were evaluated as well. RESULTS: From the reading of the detector under selected irradiation conditions, m values were obtained for different machines, ranging from 0.25 × 10(-4)% per MU for an Elekta Axesse at 10 MV to 6.5 × 10(-4)% per MU for a Varian Clinac at 18 MV. Using these values, TR(n) of patients was estimated in each facility and compared to that from the individual evaluation. Differences were within the range of uncertainty of the authors' methodology of equivalent dose and risk estimations. CONCLUSIONS: The procedure presented here allows an easy estimation of the second cancer risk due to neutrons for any patient, given the number of MU of the treatment. It will enable the consideration of this information when selecting the optimal treatment for a patient by its implementation in the treatment planning system.


Assuntos
Modelos Biológicos , Segunda Neoplasia Primária/etiologia , Nêutrons/efeitos adversos , Radiocirurgia/efeitos adversos , Estudos de Viabilidade , Feminino , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Segunda Neoplasia Primária/epidemiologia , Radiometria , Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...