Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 2006, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479316

RESUMO

The strong facet-dependent performance of glass-supported CeO2 thin films in different applications (catalysis, smart windows, etc.) has been the target of diverse fundamental and technological approaches. However, the design of accurate, cost-effective and scalable methods with the potential for large-area coverage that produce highly textured glass-supported CeO2 thin films remains a technological challenge. In the present work, it is demonstrated that under proper tuning conditions, the ultrasonic spray pyrolysis technique enables one to obtain glass-supported polycrystalline CeO2 films with noticeable texture along both the (100) and (111) directions, as well as with randomly oriented crystallites (no texture). The influence of flow rates, solution molarity, and substrate temperature on the texture and morphological characteristics, as well as optical absorption and Raman response of the deposited films, is evaluated. The obtained results are discussed on the basis of the combined dependence of the CeO2-exposed surfaces on the thermodynamic stability of the corresponding facets and the reaction kinetics, which modulate the crystallite growth direction.

2.
Sci Total Environ ; 648: 377-387, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30121037

RESUMO

The elimination of cephalexin (CPX) using electro-generated Cl2-active on Ti/RuO2-IrO2 anode was assessed in different effluents: deionized water (DW), municipal wastewater (MWW) and urine. Single Ti/RuO2 and Ti/IrO2 catalysts were prepared to compare their morphologies and electrochemical behavior against the binary DSA. XRD and profile refinement suggest that Ti/RuO2-IrO2 forms a solid solution, where RuO2 and IrO2 growths are oriented by the TiO2 substrate through substitution of Ir by Ru atoms within its rutile-type structure. SEM reveals mud-cracked structures with flat areas for all catalysts, while EDS analysis indicates atomic ratios in the range of the oxide stoichiometries in the nominal concentrations used during synthesis. A considerably higher CPX degradation is achieved in the presence of NaCl than in Na2SO4 or Na3PO4 media due to the active chlorine generation. A faster CPX degradation is reached when the current density is increased or the pH value is lowered. This last behavior may be ascribed to an acid-catalyzed reaction between HClO and CPX. Degradation rates of 22.5, 3.96, and 0.576 µmol L-1 min-1 were observed for DW, MWW and urine, respectively. The lower efficiency measured in these last two effluents was related to the presence of organic matter and urea in the matrix. A degradation pathway is proposed based on HPLC-DAD and HPLC-MS analysis, indicating the fast formation (5 min) of CPX-(S)-sulfoxide and CPX-(R)-sulfoxide, generated due the Cl2-active attack at the CPX thioether. Furthermore, antimicrobial activity elimination of the treated solution is reached once CPX, and the initial by-products are considerably eliminated. Finally, even if only 16% of initial TOC is removed, BOD5 tests prove the ability of electro-generated Cl2-active to transform the antibiotic into biodegradable compounds. A similar strategy can be used for the abatement of other recalcitrant compounds contained in real water matrices such as urine and municipal wastewaters.


Assuntos
Cefalexina/análise , Cloro/química , Irídio/química , Rutênio/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Antibacterianos/análise , Eletrodos , Águas Residuárias/análise
3.
Phys Chem Chem Phys ; 15(32): 13538-58, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23824271

RESUMO

The lithium silicates have attracted scientific interest due to their potential use as high-temperature sorbents for CO2 capture. The electronic properties and thermodynamic stabilities of lithium silicates with different Li2O/SiO2 ratios (Li2O, Li8SiO6, Li4SiO4, Li6Si2O7, Li2SiO3, Li2Si2O5, Li2Si3O7, and α-SiO2) have been investigated by combining first-principles density functional theory with lattice phonon dynamics. All these lithium silicates examined are insulators with band-gaps larger than 4.5 eV. By decreasing the Li2O/SiO2 ratio, the first valence bandwidth of the corresponding lithium silicate increases. Additionally, by decreasing the Li2O/SiO2 ratio, the vibrational frequencies of the corresponding lithium silicates shift to higher frequencies. Based on the calculated energetic information, their CO2 absorption capabilities were extensively analyzed through thermodynamic investigations on these absorption reactions. We found that by increasing the Li2O/SiO2 ratio when going from Li2Si3O7 to Li8SiO6, the corresponding lithium silicates have higher CO2 capture capacity, higher turnover temperatures and heats of reaction, and require higher energy inputs for regeneration. Based on our experimentally measured isotherms of the CO2 chemisorption by lithium silicates, we found that the CO2 capture reactions are two-stage processes: (1) a superficial reaction to form the external shell composed of Li2CO3 and a metal oxide or lithium silicate secondary phase and (2) lithium diffusion from bulk to the surface with a simultaneous diffusion of CO2 into the shell to continue the CO2 chemisorption process. The second stage is the rate determining step for the capture process. By changing the mixing ratio of Li2O and SiO2, we can obtain different lithium silicate solids which exhibit different thermodynamic behaviors. Based on our results, three mixing scenarios are discussed to provide general guidelines for designing new CO2 sorbents to fit practical needs.


Assuntos
Dióxido de Carbono/química , Lítio/química , Teoria Quântica , Silicatos/química , Dióxido de Silício/química , Termodinâmica , Propriedades de Superfície
4.
Langmuir ; 26(10): 6954-9, 2010 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-20055367

RESUMO

BaSO(4) nanostructures with controlled morphologies were successfully produced via one-step process through precipitation of BaSO(4) in aqueous and organic media. The synthesis is carried out by mixing solutions of BaCl(2) and Na(2)SO(4) in presence of EDTA (disodium ethylenediaminetetraacetic acid) at room temperature. The influence of the reaction conditions such as initial reactants concentration, pH, EDTA/[Ba(2+)] ratio and aging on the BaSO(4) nanoparticles organization is studied. Using EDTA in aqueous media, spherical secondary particles of 500 nm diameter are obtained, which are formed by 4 nm size primary particles. With dimethyl sulfoxide and small amounts of water (5%) and EDTA, the aging process allows the production of long homogeneous fibers, related to hierarchical organization of BaSO(4) nanoparticles. Direct observation of self-assembling of primary particles by HRTEM allows proposing a mechanism for fiber formation, which is based on multipolar attractions that lead to a brick-by-brick organization along a preferential orientation. Results evidence the role of EDTA as controlling agent of the morphology and primary and secondary mean particle size.


Assuntos
Sulfato de Bário/química , Membranas Artificiais , Nanoestruturas/química , Sulfato de Bário/síntese química , Ácido Edético/química , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...