Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Eng ; 17(1): 64, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845737

RESUMO

Hydrogels are three-dimensional structures with specific features that render them useful for biomedical applications, such as tissue engineering scaffolds, drug delivery systems, and wound dressings. In recent years, there has been a significant increase in the search for improved mechanical properties of hydrogels derived from natural products to extend their applications in various fields, and there are different methods to obtain strengthened hydrogels. Cationic guar gum has physicochemical properties that allow it to interact with other polymers and generate hydrogels. This study aimed to develop an ultra-stretchable and self-healing hydrogel, evaluating the influence of adding PolyOX [poly(ethylene oxide)] on the mechanical properties and the interaction with cationic guar gum for potential tissue engineering applications. We found that variations in PolyOX concentrations and pH changes influenced the mechanical properties of cationic guar gum hydrogels. After optimization experiments, we obtained a novel hydrogel, which was semi-crystalline, highly stretchable, and with an extensibility area of approximately 400 cm2, representing a 33-fold increase compared to the hydrogel before being extended. Moreover, the hydrogel presented a recovery of 96.8% after the self-healing process and a viscosity of 153,347 ± 4,662 cP. Therefore, this novel hydrogel exhibited optimal mechanical and chemical properties and could be suitable for a broad range of applications in different fields, such as tissue engineering, drug delivery, or food storage.

2.
Cancer Cell Int ; 23(1): 180, 2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37633886

RESUMO

Dietary compounds in cancer prevention have gained significant consideration as a viable method. Indole-3-carbinol (I3C) and 3,3'-diindolylmethane (DIM) are heterocyclic and bioactive chemicals found in cruciferous vegetables like broccoli, cauliflower, cabbage, and brussels sprouts. They are synthesized after glycolysis from the glucosinolate structure. Clinical and preclinical trials have evaluated the pharmacokinetic/pharmacodynamic, effectiveness, antioxidant, cancer-preventing (cervical dysplasia, prostate cancer, breast cancer), and anti-tumor activities of I3C and DIM involved with polyphenolic derivatives created in the digestion showing promising results. However, the exact mechanism by which they exert anti-cancer and apoptosis-inducing properties has yet to be entirely understood. Via this study, we update the existing knowledge of the state of anti-cancer investigation concerning I3C and DIM chemicals. We have also summarized; (i) the recent advancements in the use of I3C/DIM as therapeutic molecules since they represent potentially appealing anti-cancer agents, (ii) the available literature on the I3C and DIM characterization, and the challenges related to pharmacologic properties such as low solubility, and poor bioavailability, (iii) the synthesis and semi-synthetic derivatives, (iv) the mechanism of anti-tumor action in vitro/in vivo, (v) the action in cellular signaling pathways related to the regulation of apoptosis and anoikis as well as the cell cycle progression and cell proliferation such as peroxisome proliferator-activated receptor and PPARγ agonists; SR13668, Akt inhibitor, cyclins regulation, ER-dependent-independent pathways, and their current medical applications, to recognize research opportunities to potentially use these compounds instead chemotherapeutic synthetic drugs.

3.
Pharmaceutics ; 15(7)2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37514100

RESUMO

Wound healing is a complex process that involves restoring the structure of damaged tissues through four phases: hemostasis, inflammation, proliferation, and remodeling. Wound dressings are the most common treatment used to cover wounds, reduce infection risk and the loss of physiological fluids, and enhance wound healing. Despite there being several types of wound dressings based on different materials and fabricated through various techniques, polymeric films have been widely employed due to their biocompatibility and low immunogenicity. Furthermore, they are non-invasive, easy to apply, allow gas exchange, and can be transparent. Among different methods for designing polymeric films, solvent casting represents a reliable, preferable, and highly used technique due to its easygoing and relatively low-cost procedure compared to sophisticated methods such as spin coating, microfluidic spinning, or 3D printing. Therefore, this review focuses on the polymeric dressings obtained using this technique, emphasizing the critical manufacturing factors related to pharmaceuticals, specifically discussing the formulation variables necessary to create wound dressings that demonstrate effective performance.

4.
Front Pharmacol ; 14: 1206334, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346293

RESUMO

Being the first or second cause of death worldwide, cancer represents the most significant clinical, social, and financial burden of any human illness. Despite recent progresses in cancer diagnosis and management, traditional cancer chemotherapies have shown several adverse side effects and loss of potency due to increased resistance. As a result, one of the current approaches is on with the search of bioactive anticancer compounds from natural sources. Neopeltolide is a marine-derived macrolide isolated from deep-water sponges collected off Jamaica's north coast. Its mechanism of action is still under research but represents a potentially promising novel drug for cancer therapy. In this review, we first illustrate the general structural characterization of neopeltolide, the semi-synthetic derivatives, and current medical applications. In addition, we reviewed its anticancer properties, primarily based on in vitro studies, and the possible clinical trials. Finally, we summarize the recent progress in the mechanism of antitumor action of neopeltolide. According to the information presented, we identified two principal challenges in the research, i) the effective dose which acts neopeltolide as an anticancer compound, and ii) to unequivocally establish the mechanism of action by which the compound exerts its antiproliferative effect.

5.
J Biol Eng ; 17(1): 35, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37221599

RESUMO

The freeze-thaw (F/T) method is commonly employed during the processing and handling of drug substances to enhance their chemical and physical stability and obtain pharmaceutical applications such as hydrogels, emulsions, and nanosystems (e.g., supramolecular complexes of cyclodextrins and liposomes). Using F/T in manufacturing hydrogels successfully prevents the need for toxic cross-linking agents; moreover, their use promotes a concentrated product and better stability in emulsions. However, the use of F/T in these applications is limited by their characteristics (e.g., porosity, flexibility, swelling capacity, drug loading, and drug release capacity), which depend on the optimization of process conditions and the kind and ratio of polymers, temperature, time, and the number of cycles that involve high physical stress that could change properties associated to quality attributes. Therefore, is necessary the optimization of F/T conditions and variables. The current research regarding F/T is focused on enhancing the formulations, the process, and the use of this method in pharmaceutical, clinical, and biological areas. The present review aims to discuss different studies related to the impact and effects of the F/T process on the physical, mechanical, and chemical properties (porosity, swelling capacity) of diverse pharmaceutical applications with an emphasis on their formulation properties, the method and variables used, as well as challenges and opportunities in developing. Finally, we review the experimental approach for choosing the standard variables studied in the F/T method applying the systematic methodology of quality by design.

6.
Polymers (Basel) ; 15(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36679143

RESUMO

The increment in water pollution due to the massive development in the industrial sector is a worldwide concern due to its impact on the environment and human health. Therefore, the development of new and sustainable alternatives for water remediation is needed. In this context, aerogels present high porosity, low density, and a remarkable adsorption capacity, making them candidates for remediation applications demonstrating high efficiency in removing pollutants from the air, soil, and water. Specifically, polymer-based aerogels could be modified in their high surface area to integrate functional groups, decrease their hydrophilicity, or increase their lipophilicity, among other variations, expanding and enhancing their efficiency as adsorbents for the removal of various pollutants in water. The aerogels based on natural polymers such as cellulose, chitosan, or alginate processed by different techniques presented high adsorption capacities, efficacy in oil/water separation and dye removal, and excellent recyclability after several cycles. Although there are different reviews based on aerogels, this work gives an overview of just the natural biopolymers employed to elaborate aerogels as an eco-friendly and renewable alternative. In addition, here we show the synthesis methods and applications in water cleaning from pollutants such as dyes, oil, and pharmaceuticals, providing novel information for the future development of biopolymeric-based aerogel.

7.
Int J Mol Sci ; 25(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38203252

RESUMO

The emergence of bacterial strains displaying resistance to the currently available antibiotics is a critical global concern. These resilient bacteria can form biofilms that play a pivotal role in the failure of bacterial infection treatments as antibiotics struggle to penetrate all biofilm regions. Consequently, eradicating bacteria residing within biofilms becomes considerably more challenging than their planktonic counterparts, leading to persistent and chronic infections. Among various approaches explored, essential oils loaded in nanoparticles based on biopolymers have emerged, promising strategies that enhance bioavailability and biological activities, minimize side effects, and control release through regulated pharmacokinetics. Different available reviews analyze nanosystems and essential oils; however, usually, their main goal is the analysis of their antimicrobial properties, and progress in biofilm combat is rarely discussed, or it is not the primary objective. This review aims to provide a global vision of biofilm conformation and describes mechanisms of action attributed to each EO. Furthermore, we present a comprehensive overview of the latest developments in biopolymeric nanoparticles research, especially in chitosan- and zein-based nanosystems, targeting multidrug-resistant bacteria in both their sessile and biofilm forms, which will help to design precise strategies for combating biofilms.


Assuntos
Nanopartículas , Óleos Voláteis , Antibacterianos/farmacologia , Biofilmes , Disponibilidade Biológica
8.
Mater Sci Eng C Mater Biol Appl ; 115: 111154, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32600735

RESUMO

Enzymatic mediated poly (gallic acid) (PGAL), a stable multiradical polyanion with helicoidal secondary structure and high antioxidant capacity, was successfully grafted to poly(ε-caprolactone) (PCL) using UV-photo induction. PCL films were prepared with several levels of roughness and subsequently grafted with PGAL (PCL-g-PGAL). The results on the full characterization of the produced materials by mechanical tests, surface morphology, and topography, thermal and crystallographic analyses, as well as wettability and cell protection activity against oxidative stress, were adequate for tissue regeneration. The in vitro biocompatibility was then assessed with epithelial-like cells showing excellent adhesion and proliferation onto the PCL-g-PGAL films, most importantly, PCL-g-PGAL displayed a good ability to protect cell cultures on their surface against reactive oxygen species. These biomaterials can consequently be considered as novel biocompatible and antioxidant films with high-responsiveness for biomedical or tissue engineering applications.


Assuntos
Células Epiteliais/citologia , Ácido Gálico/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Poliésteres/química , Animais , Adesão Celular , Técnicas de Cultura de Células , Células Cultivadas , Chlorocebus aethiops , Cães , Células Epiteliais/efeitos dos fármacos , Ácido Gálico/química , Células Madin Darby de Rim Canino , Teste de Materiais , Células Vero , Molhabilidade
10.
Mater Sci Eng C Mater Biol Appl ; 76: 417-424, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28482545

RESUMO

The poly(gallic acid), produced by laccase-mediated oxidation of gallic acid in aqueous media (pH5.5) to attain a novel material with well-defined molecular structure and high water solubility (500mg/mL at 25°C), has been investigated to understand its potential biological activities. In this regard, a biomedical approach based on cytoprotective effect on human fibroblast cells exposed to UV-irradiation in the presence of the polymer has been demonstrated. The results also shows that 200µg/mL of poly(gallic acid) inhibits the growth and migration of dermal fibroblasts and cancer cell lines without affecting cell viability. Poly(gallic acid) pretreatment with 10µg/mL protects dermal fibroblasts from UV induced cell death and additionally, the cytoprotective effect reduce ROS presence in the cells. This property can be correlated with the antioxidant power (IC50 of 23.5µg/mL) of this novel material, which was ascertained by electronic paramagnetic resonance spectroscopy and spectrophotometrically. Additionally, the antimicrobial activity of this material was corroborated with the inhibition of Staphylococcus aureus (ATCC 25923) and Enterococcus faecalis (ATCC 29212) strains (MIC=400mg/mL) common bacteria found in hospitals.


Assuntos
Fibroblastos , Antioxidantes , Ácido Gálico , Humanos , Staphylococcus aureus , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA