Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Methods Programs Biomed ; 249: 108160, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38583290

RESUMO

BACKGROUND AND OBJECTIVE: Early detection and grading of Diabetic Retinopathy (DR) is essential to determine an adequate treatment and prevent severe vision loss. However, the manual analysis of fundus images is time consuming and DR screening programs are challenged by the availability of human graders. Current automatic approaches for DR grading attempt the joint detection of all signs at the same time. However, the classification can be optimized if red lesions and bright lesions are independently processed since the task gets divided and simplified. Furthermore, clinicians would greatly benefit from explainable artificial intelligence (XAI) to support the automatic model predictions, especially when the type of lesion is specified. As a novelty, we propose an end-to-end deep learning framework for automatic DR grading (5 severity degrees) based on separating the attention of the dark structures from the bright structures of the retina. As the main contribution, this approach allowed us to generate independent interpretable attention maps for red lesions, such as microaneurysms and hemorrhages, and bright lesions, such as hard exudates, while using image-level labels only. METHODS: Our approach is based on a novel attention mechanism which focuses separately on the dark and the bright structures of the retina by performing a previous image decomposition. This mechanism can be seen as a XAI approach which generates independent attention maps for red lesions and bright lesions. The framework includes an image quality assessment stage and deep learning-related techniques, such as data augmentation, transfer learning and fine-tuning. We used the architecture Xception as a feature extractor and the focal loss function to deal with data imbalance. RESULTS: The Kaggle DR detection dataset was used for method development and validation. The proposed approach achieved 83.7 % accuracy and a Quadratic Weighted Kappa of 0.78 to classify DR among 5 severity degrees, which outperforms several state-of-the-art approaches. Nevertheless, the main result of this work is the generated attention maps, which reveal the pathological regions on the image distinguishing the red lesions and the bright lesions. These maps provide explainability to the model predictions. CONCLUSIONS: Our results suggest that our framework is effective to automatically grade DR. The separate attention approach has proven useful for optimizing the classification. On top of that, the obtained attention maps facilitate visual interpretation for clinicians. Therefore, the proposed method could be a diagnostic aid for the early detection and grading of DR.


Assuntos
Aprendizado Profundo , Diabetes Mellitus , Retinopatia Diabética , Humanos , Retinopatia Diabética/diagnóstico , Inteligência Artificial , Interpretação de Imagem Assistida por Computador/métodos , Fundo de Olho
2.
Sensors (Basel) ; 20(22)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207825

RESUMO

Diabetic retinopathy (DR) is characterized by the presence of red lesions (RLs), such as microaneurysms and hemorrhages, and bright lesions, such as exudates (EXs). Early DR diagnosis is paramount to prevent serious sight damage. Computer-assisted diagnostic systems are based on the detection of those lesions through the analysis of fundus images. In this paper, a novel method is proposed for the automatic detection of RLs and EXs. As the main contribution, the fundus image was decomposed into various layers, including the lesion candidates, the reflective features of the retina, and the choroidal vasculature visible in tigroid retinas. We used a proprietary database containing 564 images, randomly divided into a training set and a test set, and the public database DiaretDB1 to verify the robustness of the algorithm. Lesion detection results were computed per pixel and per image. Using the proprietary database, 88.34% per-image accuracy (ACCi), 91.07% per-pixel positive predictive value (PPVp), and 85.25% per-pixel sensitivity (SEp) were reached for the detection of RLs. Using the public database, 90.16% ACCi, 96.26% PPV_p, and 84.79% SEp were obtained. As for the detection of EXs, 95.41% ACCi, 96.01% PPV_p, and 89.42% SE_p were reached with the proprietary database. Using the public database, 91.80% ACCi, 98.59% PPVp, and 91.65% SEp were obtained. The proposed method could be useful to aid in the diagnosis of DR, reducing the workload of specialists and improving the attention to diabetic patients.


Assuntos
Retinopatia Diabética , Exsudatos e Transudatos/diagnóstico por imagem , Fundo de Olho , Algoritmos , Diabetes Mellitus , Retinopatia Diabética/diagnóstico por imagem , Humanos , Interpretação de Imagem Assistida por Computador
3.
Comput Methods Programs Biomed ; 196: 105599, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32574904

RESUMO

BACKGROUND AND OBJECTIVE: The location of the optic disc (OD) and the fovea is usually crucial in automatic screening systems for diabetic retinopathy. Previous methods aimed at their location often fail when these structures do not have the standard appearance. The purpose of this work is to propose novel, robust methods for the automatic detection of the OD and the fovea. METHODS: The proposed method comprises a preprocessing stage, a method for retinal background extraction, a vasculature segmentation phase and the computation of various novel saliency maps. The main novelty of this work is the combination of the proposed saliency maps, which represent the spatial relationships between some structures of the retina and the visual appearance of the OD and fovea. Another contribution is the method to extract the retinal background, based on region-growing. RESULTS: The proposed methods were evaluated over a proprietary database and three public databases: DRIVE, DiaretDB1 and Messidor. For the OD, we achieved 100% accuracy for all databases except Messidor (99.50%). As for the fovea location, we also reached 100% accuracy for all databases except Messidor (99.67%). CONCLUSIONS: Our results suggest that the proposed methods are robust and effective to automatically detect the OD and the fovea. This way, they can be useful in automatic screening systems for diabetic retinopathy as well as other retinal diseases.


Assuntos
Retinopatia Diabética , Disco Óptico , Algoritmos , Retinopatia Diabética/diagnóstico por imagem , Fóvea Central/diagnóstico por imagem , Fundo de Olho , Humanos , Disco Óptico/diagnóstico por imagem , Retina/diagnóstico por imagem
4.
Entropy (Basel) ; 21(3)2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33267025

RESUMO

Diabetic retinopathy (DR) is one of the most common causes of visual loss in developed countries. Computer-aided diagnosis systems aimed at detecting DR can reduce the workload of ophthalmologists in screening programs. Nevertheless, a large number of retinal images cannot be analyzed by physicians and automatic methods due to poor quality. Automatic retinal image quality assessment (RIQA) is needed before image analysis. The purpose of this study was to combine novel generic quality features to develop a RIQA method. Several features were calculated from retinal images to achieve this goal. Features derived from the spatial and spectral entropy-based quality (SSEQ) and the natural images quality evaluator (NIQE) methods were extracted. They were combined with novel sharpness and luminosity measures based on the continuous wavelet transform (CWT) and the hue saturation value (HSV) color model, respectively. A subset of non-redundant features was selected using the fast correlation-based filter (FCBF) method. Subsequently, a multilayer perceptron (MLP) neural network was used to obtain the quality of images from the selected features. Classification results achieved 91.46% accuracy, 92.04% sensitivity, and 87.92% specificity. Results suggest that the proposed RIQA method could be applied in a more general computer-aided diagnosis system aimed at detecting a variety of retinal pathologies such as DR and age-related macular degeneration.

5.
Entropy (Basel) ; 21(4)2019 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33267131

RESUMO

Diabetic retinopathy (DR) is the main cause of blindness in the working-age population in developed countries. Digital color fundus images can be analyzed to detect lesions for large-scale screening. Thereby, automated systems can be helpful in the diagnosis of this disease. The aim of this study was to develop a method to automatically detect red lesions (RLs) in retinal images, including hemorrhages and microaneurysms. These signs are the earliest indicators of DR. Firstly, we performed a novel preprocessing stage to normalize the inter-image and intra-image appearance and enhance the retinal structures. Secondly, the Entropy Rate Superpixel method was used to segment the potential RL candidates. Then, we reduced superpixel candidates by combining inaccurately fragmented regions within structures. Finally, we classified the superpixels using a multilayer perceptron neural network. The used database contained 564 fundus images. The DB was randomly divided into a training set and a test set. Results on the test set were measured using two different criteria. With a pixel-based criterion, we obtained a sensitivity of 81.43% and a positive predictive value of 86.59%. Using an image-based criterion, we reached 84.04% sensitivity, 85.00% specificity and 84.45% accuracy. The algorithm was also evaluated on the DiaretDB1 database. The proposed method could help specialists in the detection of RLs in diabetic patients.

6.
Philos Trans A Math Phys Eng Sci ; 376(2126)2018 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-29986920

RESUMO

Normal pressure hydrocephalus (NPH) encompasses a heterogeneous group of disorders generally characterized by clinical symptoms, ventriculomegaly and anomalous cerebrospinal fluid (CSF) dynamics. Lumbar infusion tests (ITs) are frequently performed in the preoperatory evaluation of patients who show NPH features. The analysis of intracranial pressure (ICP) signals recorded during ITs could be useful to better understand the pathophysiology underlying NPH and to assist treatment decisions. In this study, 131 ICP signals recorded during ITs were analysed using two continuous wavelet transform (CWT)-derived parameters: Jensen divergence (JD) and spectral flux (SF). These parameters were studied in two frequency bands, associated with different components of the signal: B1(0.15-0.3 Hz), related to respiratory blood pressure oscillations; and B2 (0.67-2.5 Hz), related to ICP pulse waves. Statistically significant differences (p < 1.70 × 10-3, Bonferroni-corrected Wilcoxon signed-rank tests) in pairwise comparisons between phases of ITs were found using the mean and standard deviation of JD and SF. These differences were mainly found in B2, where a lower irregularity and variability, together with less prominent time-frequency fluctuations, were found in the hypertension phase of ITs. Our results suggest that wavelet analysis could be useful for understanding CSF dynamics in NPH.This article is part of the theme issue 'Redundancy rules: the continuous wavelet transform comes of age'.


Assuntos
Hidrocefalia/fisiopatologia , Pressão Intracraniana , Processamento de Sinais Assistido por Computador , Análise de Ondaletas , Idoso , Feminino , Humanos , Masculino , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...