Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(6): 107316, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38663826

RESUMO

Neuraminidases (NEUs) also called sialidases are glycosidases which catalyze the removal of terminal sialic acid residues from glycoproteins, glycolipids, and oligosaccharides. Mammalian NEU-1 participates in regulation of cell surface receptors such as insulin receptor (IR), epithelial growth factor receptor, low-density lipoprotein receptor, and toll-like receptor 4. At the plasma membrane, NEU-1 can be associated with the elastin-binding protein and the carboxypeptidase protective protein/cathepsin A to constitute the elastin receptor complex. In this complex, NEU-1 is essential for elastogenesis, signal transduction through this receptor and for biological effects of the elastin-derived peptides on atherosclerosis, thrombosis, insulin resistance, nonalcoholic steatohepatitis, and cancers. This is why research teams are developing inhibitors targeting this sialidase. Previously, we developed interfering peptides to inhibit the dimerization and the activation of NEU-1. In this study, we investigated the effects of these peptides on IR activation in vitro and in vivo. Using cellular overexpression and endogenous expression models of NEU-1 and IR (COS-7 and HepG2 cells, respectively), we have shown that interfering peptides inhibit NEU-1 dimerization and sialidase activity which results in a reduction of IR phosphorylation. These results demonstrated that NEU-1 positively regulates IR phosphorylation and activation in our conditions. In vivo, biodistribution study showed that interfering peptides are well distributed in mice. Treatment of C57Bl/6 mice during 8 weeks with interfering peptides induces a hyperglycemic effect in our experimental conditions. Altogether, we report here that inhibition of NEU-1 sialidase activity by interfering peptides decreases IR activity in vitro and glucose homeostasis in vivo.

2.
Cancers (Basel) ; 14(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36230790

RESUMO

Sialidases or neuraminidases (NEU) are glycosidases which cleave terminal sialic acid residues from glycoproteins, glycolipids and oligosaccharides. Four types of mammalian sialidases, which are encoded by different genes, have been described with distinct substrate specificity and subcellular localization: NEU-1, NEU-2, NEU-3 and NEU-4. Among them, NEU-1 regulates many membrane receptors through desialylation which results in either the activation or inhibition of these receptors. At the plasma membrane, NEU-1 also associates with the elastin-binding protein and the carboxypeptidase protective protein/cathepsin A to form the elastin receptor complex. The activation of NEU-1 is required for elastogenesis and signal transduction through this receptor, and this is responsible for the biological effects that are mediated by the elastin-derived peptides (EDP) on obesity, insulin resistance and non-alcoholic fatty liver diseases. Furthermore, NEU-1 expression is upregulated in hepatocellular cancer at the mRNA and protein levels in patients, and this sialidase regulates the hepatocellular cancer cells' proliferation and migration. The implication of NEU-1 in other cancer types has also been shown notably in the development of pancreatic carcinoma and breast cancer. Altogether, these data indicate that NEU-1 plays a key role not only in metabolic disorders, but also in the development of several cancers which make NEU-1 a pharmacological target of high potential in these physiopathological contexts.

3.
Int J Mol Sci ; 23(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35328674

RESUMO

Diabetes is a major concern of our society as it affects one person out of 11 around the world. Elastic fiber alterations due to diabetes increase the stiffness of large arteries, but the structural effects of these alterations are poorly known. To address this issue, we used synchrotron X-ray microcomputed tomography with in-line phase contrast to image in three dimensions C57Bl6J (control) and db/db (diabetic) mice with a resolution of 650 nm/voxel and a field size of 1.3 mm3. Having previously shown in younger WT and db/db mouse cohorts that elastic lamellae contain an internal supporting lattice, here we show that in older db/db mice the elastic lamellae lose this scaffold. We coupled this label-free method with automated image analysis to demonstrate that the elastic lamellae from the arterial wall are structurally altered and become 11% smoother (286,665 measurements). This alteration suggests a link between the loss of the 3D lattice-like network and the waviness of the elastic lamellae. Therefore, waviness measurement appears to be a measurable elasticity indicator and the 3D lattice-like network appears to be at the origin of the existence of this waviness. Both could be suitable indicators of the overall elasticity of the aorta.


Assuntos
Diabetes Mellitus , Síncrotrons , Idoso , Animais , Aorta/diagnóstico por imagem , Tecido Elástico , Elasticidade , Humanos , Camundongos , Microtomografia por Raio-X
4.
Front Endocrinol (Lausanne) ; 13: 815356, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222273

RESUMO

The incidence of cardiovascular diseases is increasing worldwide with the growing aging of the population. Biological aging has major influence on the vascular tree and is associated with critical changes in the morphology and function of the arterial wall together with an extensive remodeling of the vascular extracellular matrix. Elastic fibers fragmentation and release of elastin degradation products, also known as elastin-derived peptides (EDPs), are typical hallmarks of aged conduit arteries. Along with the direct consequences of elastin fragmentation on the mechanical properties of arteries, the release of EDPs has been shown to modulate the development and/or progression of diverse vascular and metabolic diseases including atherosclerosis, thrombosis, type 2 diabetes and nonalcoholic steatohepatitis. Most of the biological effects mediated by these bioactive peptides are due to a peculiar membrane receptor called elastin receptor complex (ERC). This heterotrimeric receptor contains a peripheral protein called elastin-binding protein, the protective protein/cathepsin A, and a transmembrane sialidase, the neuraminidase-1 (NEU1). In this review, after an introductive part on the consequences of aging on the vasculature and the release of EDPs, we describe the composition of the ERC, the signaling pathways triggered by this receptor, and the current pharmacological strategies targeting ERC activation. Finally, we present and discuss new regulatory functions that have emerged over the last few years for the ERC through desialylation of membrane glycoproteins by NEU1, and its potential implication in receptor transactivation.


Assuntos
Aterosclerose , Diabetes Mellitus Tipo 2 , Idoso , Aterosclerose/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Peptídeos/metabolismo , Receptores de Superfície Celular/metabolismo
5.
FASEB J ; 35(10): e21844, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34473371

RESUMO

The arterial wall consists of three concentric layers: intima, media, and adventitia. Beyond their resident cells, these layers are characterized by an extracellular matrix (ECM), which provides both biochemical and mechanical support. Elastin, the major component of arterial ECM, is present in the medial layer and organized in concentric elastic lamellae that confer resilience to the wall. We explored the arterial wall structures from C57Bl6 (control), db/db (diabetic), and ApoE-/- (atherogenic) mice aged 3 months using synchrotron X-ray computed microtomography on fixed and unstained tissues with a large image field (8 mm3 ). This approach combined a good resolution (0.83 µm/voxel), large 3D imaging field. and an excellent signal to noise ratio conferred by phase-contrast imaging. We determined from 2D virtual slices that the thickness of intramural ECM structures was comparable between strains but automated image analysis of the 3D arterial volumes revealed a lattice-like network within concentric elastic lamellae. We hypothesize that this network could play a role in arterial mechanics. This work demonstrates that phase-contrast synchrotron X-ray computed microtomography is a powerful technique which to characterize unstained soft tissues.


Assuntos
Aorta/citologia , Aterosclerose/patologia , Diabetes Mellitus Experimental/patologia , Imageamento Tridimensional/métodos , Estresse Mecânico , Microtomografia por Raio-X/métodos , Animais , Elasticidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE
6.
J Cardiovasc Pharmacol ; 77(5): 660-672, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33760798

RESUMO

ABSTRACT: Desialylation, governed by sialidases or neuraminidases, is strongly implicated in a wide range of human disorders, and accumulative data show that inhibition of neuraminidases, such as neuraminidases 1 sialidase, may be useful for managing atherosclerosis. Several studies have reported promising effects of oseltamivir phosphate, a widely used anti-influenza sialidase inhibitor, on human cancer cells, inflammation, and insulin resistance. In this study, we evaluated the effects of oseltamivir phosphate on atherosclerosis and thrombosis and potential liver toxicity in LDLR-/- mice fed with high-fat diet. Our results showed that oseltamivir phosphate significantly decreased plasma levels of LDL cholesterol and elastin fragmentation in aorta. However, no effect was observed on both atherosclerotic plaque size in aortic roots and chemically induced thrombosis in carotid arteries. Importantly, oseltamivir phosphate administration had adverse effects on the liver of mice and significantly increased messenger RNA expression levels of F4/80, interleukin-1ß, transforming growth factor-ß1, matrix metalloproteinase-12, and collagen. Taken together, our findings suggest that oseltamivir phosphate has limited benefits on atherosclerosis and carotid thrombosis and may lead to adverse side effects on the liver with increased inflammation and fibrosis.


Assuntos
Antivirais/toxicidade , Doenças da Aorta/tratamento farmacológico , Aterosclerose/tratamento farmacológico , Trombose das Artérias Carótidas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Fígado/efeitos dos fármacos , Oseltamivir/toxicidade , Receptores de LDL/deficiência , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta/patologia , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Trombose das Artérias Carótidas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Dieta Hiperlipídica , Modelos Animais de Doenças , Feminino , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Camundongos Knockout , Placa Aterosclerótica , Receptores de LDL/genética , Medição de Risco
7.
Nanoscale ; 13(2): 1124-1133, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33399602

RESUMO

Arterial stiffness is a complex process affecting the aortic tree that significantly contributes to cardiovascular diseases (systolic hypertension, coronary artery disease, heart failure or stroke). This process involves a large extracellular matrix remodeling mainly associated with elastin content decrease and collagen content increase. Additionally, various chemical modifications that accumulate with ageing have been shown to affect long-lived assemblies, such as elastic fibers, that could affect their elasticity. To precisely characterize the fiber changes and the evolution of its elasticity with ageing, high resolution and multimodal techniques are needed for precise insight into the behavior of a single fiber and its surrounding medium. In this study, the latest developments in atomic force microscopy and the related nanomechanical modes are used to investigate the evolution and in a near-physiological environment, the morphology and elasticity of aorta cross sections obtained from mice of different ages with an unprecedented resolution. In correlation with more classical approaches such as pulse wave velocity and fluorescence imaging, we demonstrate that the relative Young's moduli of elastic fibers, as well as those of the surrounding areas, significantly increase with ageing. This nanoscale characterization presents a new view on the stiffness process, showing that, besides the elastin and collagen content changes, elasticity is impaired at the molecular level, allowing a deeper understanding of the ageing process. Such nanomechanical AFM measurements of mouse tissue could easily be applied to studies of diseases in which elastic fibers suffer pathologies such as atherosclerosis and diabetes, where the precise quantification of fiber elasticity could better follow the fiber remodeling and predict plaque rupture.


Assuntos
Aorta , Análise de Onda de Pulso , Envelhecimento , Animais , Elasticidade , Camundongos , Microscopia de Força Atômica
8.
J Physiol Biochem ; 76(3): 457-467, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32592089

RESUMO

Elastin, the major protein of the extracellular matrix, is specially found in cardiovascular tissues and contributing to 30-50% of the dry weight of blood vessels. Elastin regulates cell signalling pathways involved in morphogenesis, injury response and inflammation. The function of elastin is frequently compromised in damaged or aged elastic tissues. Indeed, elastin degradation, observed during ageing, and the resulting production of elastin-derived peptides (EDPs), have crucial impacts on cardiovascular disease (atherosclerosis, thrombosis) or on metabolism disease progressions (type 2 diabetes or non-alcoholic steatohepatitis). In the present study, we analysed the EDP effects on 3T3 preadipocyte cell differentiation. In a first part, we treated 3T3-L1 cells with EDP and visualized the lipid droplet accumulation by the oil red O staining and measured the expression of various transcription factors and adipocyte-specific mRNAs by real-time RT-PCR. We demonstrated that the elastin receptor complex, ERC, is activated by EDPs and decreased adipocyte differentiation by a modulation of crucial adipogenesis transcriptional factor particularly PPARγ. In a second part, we identified the signalling pathway implicated in EDP-reduced cell differentiation. The flow cytometry and immunocytochemistry approaches showed that ERC activated by EDP produced a second messenger, lactosylceramide (Lac-Cer). Moreover, this Lac-Cer production favoured the phosphorylation of ERK1-2 (p-ERK1-2), to decrease adipocyte differentiation by a modulation of adipogenesis transcriptional factor PPARγ. To conclude, the EDP/Lac-Cer/p-ERK1-2 signalling pathway may be studied further as a critical target for treating complications associated with adipocyte dedifferentiation such as obesity and diabetes insulin resistance.


Assuntos
Adipócitos/citologia , Adipogenia , Elastina/metabolismo , Lactosilceramidas/metabolismo , Oligopeptídeos/metabolismo , Células 3T3-L1 , Animais , Diferenciação Celular , Regulação da Expressão Gênica , Camundongos , Receptores de Superfície Celular/metabolismo
9.
Front Oncol ; 10: 519, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32351895

RESUMO

Cellular functions are regulated by extracellular signals such as hormones, neurotransmitters, matrix ligands, and other chemical or physical stimuli. Ligand binding on its transmembrane receptor induced cell signaling and the recruitment of several interacting partners to the plasma membrane. Nowadays, it is well-established that the transmembrane domain is not only an anchor of these receptors to the membrane, but it also plays a key role in receptor dimerization and activation. Indeed, interactions between transmembrane helices are associated with specific biological activity of the proteins as cell migration, proliferation, or differentiation. Overexpression or constitutive dimerization (due notably to mutations) of these transmembrane receptors are involved in several physiopathological contexts as cancers. The transmembrane domain of tyrosine kinase receptors as ErbB family proteins (implicated in several cancers as HER2 in breast cancer) or other receptors as Neuropilins has been described these last years as a target to inhibit their dimerization/activation using several strategies. In this review, we will focus on the strategy which consists in using peptides to disturb in a specific manner the interactions between transmembrane domains and the signaling pathways (induced by ligand binding) of these receptors involved in cancer. This approach can be extended to inhibit other transmembrane protein dimerization as neuraminidase-1 (the catalytic subunit of elastin receptor complex), Discoidin Domain Receptor 1 (a tyrosine kinase receptor activated by type I collagen) or G-protein coupled receptors (GPCRs) which are involved in cancer processes.

10.
Front Cell Dev Biol ; 8: 611121, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33392200

RESUMO

Sialidases, or neuraminidases, are involved in several human disorders such as neurodegenerative, infectious and cardiovascular diseases, and cancers. Accumulative data have shown that inhibition of neuraminidases, such as NEU1 sialidase, may be a promising pharmacological target, and selective inhibitors of NEU1 are therefore needed to better understand the biological functions of this sialidase. In the present study, we designed interfering peptides (IntPep) that target a transmembrane dimerization interface previously identified in human NEU1 that controls its membrane dimerization and sialidase activity. Two complementary strategies were used to deliver the IntPep into cells, either flanked to a TAT sequence or non-tagged for solubilization in detergent micelles. Combined with molecular dynamics simulations and heteronuclear nuclear magnetic resonance (NMR) studies in membrane-mimicking environments, our results show that these IntPep are able to interact with the dimerization interface of human NEU1, to disrupt membrane NEU1 dimerization and to strongly decrease its sialidase activity at the plasma membrane. In conclusion, we report here new selective inhibitors of human NEU1 of strong interest to elucidate the biological functions of this sialidase.

11.
Matrix Biol ; 84: 57-67, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31226402

RESUMO

Extracellular matrix (ECM) has for a long time being considered as a simple architectural support for cells. It is now clear that ECM presents a fundamental influence on cells driving their phenotype and fate. This complex network is highly specialized and the different classes of macromolecules that comprise the ECM determine its biological functions. For instance, collagens are responsible for the tensile strength of tissues, proteoglycans and glycosaminoglycans are essential for hydration and resistance to compression, and glycoproteins such as laminins facilitate cell attachment. The largest structures of the ECM are the elastic fibers found in abundance in tissues suffering high mechanical constraints such as skin, lungs or arteries. These structures present a very complex composition whose core is composed of elastin surrounded by a microfibrils mantle. Elastogenesis is a tightly regulated process involving the sialidase activity of the Neuraminidase-1 (Neu-1) sub-unit of the Elastin Receptor Complex. Interestingly, Neu-1 subunit also serves as a sensor of elastin degradation via its ability to transmit elastin-derived peptides signaling. Finally, reports showing that neuraminidase activity is able to regulate TGF-ß activation raises questions about a possible role for Neu-1 in elastic fibers remodeling. In this mini review, we develop the concept of the regulation of the whole life of elastic fibers through an original scope, the key role of Neu-1 sialidase enzymatic activity.


Assuntos
Elastina/química , Elastina/metabolismo , Neuraminidase/metabolismo , Animais , Matriz Extracelular/metabolismo , Humanos , Proteólise , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
12.
FEBS J ; 286(15): 2980-2993, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30946528

RESUMO

The Cardiovascular Continuum describes a sequence of events from cardiovascular risk factors to end-stage heart disease. It includes conventional pathologies affecting cardiovascular functions such as hypertension, atherosclerosis or thrombosis and was traditionally considered from the metabolic point of view. This Cardiovascular Continuum, originally described by Dzau and Braunwald, was extended by O'Rourke to consider also the crucial role played by degradation of elastic fibers, occurring during aging, in the appearance of vascular stiffness, another deleterious risk factor of the continuum. However, the involvement of the elastin degradation products, named elastin-derived peptides, to the Cardiovascular Continuum progression has not been considered before. Data from our laboratory and others clearly showed that these bioactive peptides are central regulators of this continuum, thereby amplifying appearance and evolution of cardiovascular risk factors such as diabetes or hypertension, of vascular alterations such as atherothrombosis and calcification, but also nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. The Elastin Receptor Complex has been shown to be a crucial actor in these processes. We propose here the participation of these elastin-derived peptides and of the Elastin Receptor Complex in these events, and introduce a revisited Cardiovascular Continuum based on their involvement, for which elastin-based pharmacological strategies could have a strong impact in the future.


Assuntos
Doenças Cardiovasculares/metabolismo , Elastina/metabolismo , Síndrome Metabólica/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Elastina/química , Humanos , Peptídeos/metabolismo
13.
Front Pharmacol ; 7: 32, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26973522

RESUMO

Elastin, one of the longest-lived proteins, confers elasticity to tissues with high mechanical constraints. During aging or pathophysiological conditions such as cancer progression, this insoluble polymer of tropoelastin undergoes an important degradation leading to the release of bioactive elastin-derived peptides (EDPs), named elastokines. EDP exhibit several biological functions able to drive tumor development by regulating cell proliferation, invasion, survival, angiogenesis, and matrix metalloproteinase expression in various tumor and stromal cells. Although, several receptors have been suggested to bind elastokines (αvß3 and αvß5 integrins, galectin-3), their main receptor remains the elastin receptor complex (ERC). This heterotrimer comprises a peripheral subunit, named elastin binding protein (EBP), associated to the protective protein/cathepsin A (PPCA). The latter is bound to a membrane-associated protein called Neuraminidase-1 (Neu-1). The pro-tumoral effects of elastokines have been linked to their binding onto EBP. Additionally, Neu-1 sialidase activity is essential for their signal transduction. Consistently, EDP-EBP interaction and Neu-1 activity emerge as original anti-tumoral targets. Interestingly, besides its direct involvement in cancer progression, the ERC also regulates diabetes outcome and thrombosis, an important risk factor for cancer development and a vascular process highly increased in patients suffering from cancer. In this review, we will describe ERC and elastokines involvement in cancer development suggesting that this unique receptor would be a promising therapeutic target. We will also discuss the pharmacological concepts aiming at blocking its pro-tumoral activities. Finally, its emerging role in cancer-associated complications and pathologies such as diabetes and thrombotic events will be also considered.

14.
PLoS One ; 10(6): e0129994, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26086247

RESUMO

Degradation of elastin leads to the production of elastin-derived peptides (EDP), which exhibit several biological effects, such as cell proliferation or protease secretion. Binding of EDP on the elastin receptor complex (ERC) triggers lactosylceramide (LacCer) production and ERK1/2 activation following ERC Neu-1 subunit activation. The ability for ERC to transduce signals is lost during aging, but the mechanism involved is still unknown. In this study, we characterized an in vitro model of aging by subculturing human dermal fibroblasts. This model was used to understand the loss of EDP biological activities during aging. Our results show that ERC uncoupling does not rely on Neu-1 or PPCA mRNA or protein level changes. Furthermore, we observe that the membrane targeting of these subunits is not affected with aging. However, we evidence that Neu-1 activity and LacCer production are altered. Basal Neu-1 catalytic activity is strongly increased in aged cells. Consequently, EDP fail to promote Neu-1 catalytic activity and LacCer production in these cells. In conclusion, we propose, for the first time, an explanation for ERC uncoupling based on the age-related alterations of Neu-1 activity and LacCer production that may explain the loss of EDP-mediated effects occurring during aging.


Assuntos
Antígenos CD/metabolismo , Senescência Celular , Elastina/metabolismo , Fibroblastos/metabolismo , Lactosilceramidas/metabolismo , Neuraminidase/metabolismo , Receptores de Superfície Celular/metabolismo , Envelhecimento , Células Cultivadas , Ativação Enzimática , Fibroblastos/citologia , Regulação da Expressão Gênica , Humanos
15.
PLoS One ; 8(6): e66515, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23824685

RESUMO

Immune cell infiltration of expanding adipose tissue during obesity and its role in insulin resistance has been described and involves chemokines. However, studies so far have focused on a single chemokine or its receptor (especially CCL2 and CCL5) whereas redundant functions of chemokines have been described. The objective of this work was to explore the expression of chemokines in inflamed adipose tissue in obesity. Human and mouse adipocytes were analyzed for expression of chemokines in response to inflammatory signal (TNF-α) using microarrays and gene set enrichment analysis. Gene expression was verified by qRT-PCR. Chemokine protein was determined in culture medium with ELISA. Chemokine expression was investigated in human subcutaneous adipose tissue biopsies and mechanism of chemokine expression was investigated using chemical inhibitors and cellular and animal transgenic models. Chemokine encoding genes were the most responsive genes in TNF-α treated human and mouse adipocytes. mRNA and protein of 34 chemokine genes were induced in a dose-dependent manner in the culture system. Furthermore, expression of those chemokines was elevated in human obese adipose tissue. Finally, chemokine expression was reduced by NF-κB inactivation and elevated by NF-κB activation. Our data indicate that besides CCL2 and CCL5, numerous other chemokines such as CCL19 are expressed by adipocytes under obesity-associated chronic inflammation. Their expression is regulated predominantly by NF-κB. Those chemokines could be involved in the initiation of infiltration of leukocytes into obese adipose tissue.


Assuntos
Tecido Adiposo/metabolismo , Quimiocinas/metabolismo , NF-kappa B/metabolismo , Tecido Adiposo/citologia , Animais , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Humanos , Camundongos , Obesidade/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima
16.
Food Chem Toxicol ; 47(6): 1221-30, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19233242

RESUMO

The mitogen-activated protein kinases (MAPK) and nuclear factor kappaB (NF-kappaB) are involved in transduction cascades that play a key role in inflammatory response. We tested the ability of preselected natural polyphenolic extracts (grape seed, cocoa, sugar cane, oak, mangosteen and pomegranate) to modulate intestinal inflammation using human intestinal Caco-2 cells treated for 4h with these extracts and then stimulated by cytokines for 24 or 48h. The effect of polyphenolic extracts, at 50 micromol of gallic acid equivalent/l, was investigated on inflammation-related cellular events: (i) NF-kappaB activity (cells transfected with a NF-kappaB-luciferase construct), (ii) activation of Erk1/2 and JNK (western blotting), (iii) secretion of interleukin 8 (IL-8) (ELISA), (iv) secretion of prostaglandin (PG) E(2) (ELISA), (v) production of NO (Griess method). Results show that: (i) sugar cane, oak and pomegranate extracts inhibited NF-kappaB activity (from 1.6 to 1.9-fold) (P<0.001); (ii) pomegranate slightly inhibited Erk1/2 activation (1.3-fold) (P=0.008); (iii) oak and pomegranate decreased NO synthesis by 1.5-fold (P<0.001) and that of IL-8 by 10.3 and 6.7-fold respectively; (iv) pomegranate and cocoa decreased PGE(2) synthesis by 4.6 (P<0.0001) and 2.2-fold (P=0.001), respectively. We suggest that pomegranate extract could be particularly promising in dietary prevention of intestinal inflammation.


Assuntos
Flavonoides/farmacologia , Mediadores da Inflamação/antagonistas & inibidores , Fenóis/farmacologia , Plantas/química , Amidinas , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Cobre/química , Dinoprostona/biossíntese , Ativação Enzimática/efeitos dos fármacos , Flavonoides/isolamento & purificação , Radicais Livres/química , Hemólise/efeitos dos fármacos , Humanos , Interleucina-8/biossíntese , Lipoproteínas LDL/química , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/antagonistas & inibidores , Óxido Nítrico/biossíntese , Oxirredução , Fenóis/isolamento & purificação , Extratos Vegetais/farmacologia , Polifenóis , Substâncias Reativas com Ácido Tiobarbitúrico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...