Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Transplant ; 38(3): e15268, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38450751

RESUMO

INTRODUCTION: The purpose of this study was to compare early outcomes of de novo LCPT (once-daily extended-release tacrolimus) to IR TAC (twice-daily immediate-release tacrolimus) in a predominantly African American (AA) adult kidney transplant population. METHODS: This is a single center, retrospective cohort study. Patients were divided into two cohorts: IR TAC (administered between January 1, 2017, and January 31, 2019) and LCPT (administered between February 1, 2019, and May 31, 2020). Primary endpoints were changes in tacrolimus trough levels (ng/mL) and estimated glomerular filtration rate up to 12 months post-transplantation. Clinical endpoints included graft survival, delayed graft function, biopsy-proven rejection, CMV viremia, and BK. A propensity score weighted generalized linear mixed effects model was used for analysis. RESULTS: The rate of change in tacrolimus levels was significantly higher in the LCPT cohort compared to the IR TAC cohort at 14 days post-discharge (.2455 ng/mL per day vs. .1073 ng/mL, respectively; p < .001). Subsequently, the LCPT cohort had a slightly higher rate of decline (-.015 ng/mL per day vs. -.010 ng/mL with IR TAC; p = .0894) up to 12 months post-discharge. Although eGFR was similar between the two cohorts at 12 months post-transplant, the rate of increase was slower in the LCPT cohort (.1371 mL/min per day vs. .1852 mL/min per day, p = .0314). No significant differences were found in graft survival, DGF, BPAR, CMV, or BK infection. CONCLUSION: This study demonstrates that despite higher early trough levels with immediate post-transplant LCPT use, clinical outcomes are comparable to IR TAC at one-year post-transplant. Notably, LCPT use does not increase the incidence of DGF and that this formulation of CNI can be used as first line therapy post-transplant.


Assuntos
Infecções por Citomegalovirus , Transplante de Rim , Adulto , Humanos , Assistência ao Convalescente , Negro ou Afro-Americano , Alta do Paciente , Estudos Retrospectivos , Tacrolimo/uso terapêutico
3.
mSystems ; 6(3): e0105820, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34061574

RESUMO

Metabolites have essential roles in microbial communities, including as mediators of nutrient and energy exchange, cell-to-cell communication, and antibiosis. However, detecting and quantifying metabolites and other chemicals in samples having extremes in salt or mineral content using liquid chromatography-mass spectrometry (LC-MS)-based methods remains a significant challenge. Here, we report a facile method based on in situ chemical derivatization followed by extraction for analysis of metabolites and other chemicals in hypersaline samples, enabling for the first time direct LC-MS-based exometabolomics analysis in sample matrices containing up to 2 M total dissolved salts. The method, MetFish, is applicable to molecules containing amine, carboxylic acid, carbonyl, or hydroxyl functional groups, and it can be integrated into either targeted or untargeted analysis pipelines. In targeted analyses, MetFish provided limits of quantification as low as 1 nM, broad linear dynamic ranges (up to 5 to 6 orders of magnitude) with excellent linearity, and low median interday reproducibility (e.g., 2.6%). MetFish was successfully applied in targeted and untargeted exometabolomics analyses of microbial consortia, quantifying amino acid dynamics in the exometabolome during community succession; in situ in a native prairie soil, whose exometabolome was isolated using a hypersaline extraction; and in input and produced fluids from a hydraulically fractured well, identifying dramatic changes in the exometabolome over time in the well. IMPORTANCE The identification and accurate quantification of metabolites using electrospray ionization-mass spectrometry (ESI-MS) in hypersaline samples is a challenge due to matrix effects. Clean-up and desalting strategies that typically work well for samples with lower salt concentrations are often ineffective in hypersaline samples. To address this gap, we developed and demonstrated a simple yet sensitive and accurate method-MetFish-using chemical derivatization to enable mass spectrometry-based metabolomics in a variety of hypersaline samples from varied ecosystems and containing up to 2 M dissolved salts.

4.
Hum Immunol ; 82(3): 139-146, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33390268

RESUMO

Antibody-mediated rejection is the principal cause of allotransplant graft failure. Available studies differ on the impact of de novo donor specific antibody (dnDSA) in pancreas transplants but are limited by patient sample size and sera sample collection. High-resolution HLA incompatibility scoring algorithms are able to more accurately predict dnDSA development. We hypothesized that HLA incompatibility scores as determined by the HLA-Matchmaker, HLA-EMMA, and PIRCHE-II algorithms would serve as a predictor of de novo donor specific antibody (dnDSA) development and clarify the role dnDSA as detrimental to simultaneous pancreas-kidney graft survival. Our results show that female sex and race were significantly associated with dnDSA development and dnDSA development resulted in worse kidney and pancreas graft survival. The majority of individuals who developed dnDSA (88%), developed anti-HLA-DQ antibody in some combination with anti-HLA class I or -DR. A multivariate analysis of the incompatibility scores showed that both HLA-Matchmaker and PIRCHE-II scores predicted anti-DQ dnDSA development. An optimal cutoff threshold for incompatibility matching was obtained for these scores and demonstrated statistical significance when predicting freedom from anti-DQ DSA development. In conclusion, increased scores from high-resolution HLA matching predict dnDSA development, and dnDSA is associated with antibody-mediated rejection and worse pancreas and kidney graft outcomes.


Assuntos
Epitopos/imunologia , Rejeição de Enxerto/imunologia , Antígenos HLA-DQ/imunologia , Teste de Histocompatibilidade/métodos , Isoanticorpos/metabolismo , Transplante de Rim , Transplante de Pâncreas , Adulto , Formação de Anticorpos , Feminino , Rejeição de Enxerto/diagnóstico , Sobrevivência de Enxerto , Histocompatibilidade , Humanos , Masculino , Prognóstico
5.
Surg Clin North Am ; 99(2): 387-401, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30846041

RESUMO

Orthotopic liver transplantation (OLT) has many roles in biliary disease. OLT provides excellent results for patients with unresectable hilar cholangiocarcinoma. OLT prolongs survival in primary biliary cirrhosis not responsive to therapy and improves quality of life. OLT remains the durable option for patients with primary sclerosing cholangitis and complications of end-stage liver disease or recurrent cholangitis secondary to biliary obstruction. Indications for OLT after bile duct injury are chronic liver disease secondary to biliary cirrhosis and acute liver failure from associated vascular injury. OLT is treatment of choice for Caroli disease and syndrome when fibrosis leads to portal hypertension and esophageal varices.


Assuntos
Doenças dos Ductos Biliares/cirurgia , Sistema Biliar/lesões , Colangiocarcinoma/cirurgia , Transplante de Fígado , Doenças dos Ductos Biliares/patologia , Colangiocarcinoma/patologia , Humanos , Seleção de Pacientes
6.
Int J Syst Evol Microbiol ; 68(6): 2116-2123, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29855404

RESUMO

There was an error in the proposed genus name in the published article, in that the genus 'Salinivirga' was effectively published while this article was in review. Therefore, the genus 'Salinivirga' should be replaced with 'Saliniramus'. For the convenience of future readers, we have included the complete corrected article below, in which all occurrences of the incorrect genus name have been amended: A halophilic bacterial strain, HL-109T, was isolated from the unicyanobacterial consortium UCC-O, which was obtained from the photosynthetic mat of Hot Lake (Washington, USA). A polyphasic approach using phenotypic, genotypic and chemotaxonomic data was used to classify the strain within the order Rhizobiales. The organism stained Gram-negative and was a moderate thermophile with a growth optimum of 45 °C. It was obligately aerobic, heterotrophic and halophilic, growing in both NaCl and MgSO4 brines. The novel isolate had a polymorphic cellular morphology of short rods with occasional branching, and cells were monotrichous. The major fatty acids detected were C18 : 1, C18 : 0, C16 : 0 and C18 : cyc. Phylogenetic analysis of the 16S rRNA gene placed the strain in the order Rhizobiales and it shared 94 % identity with the type strain of its nearest relative, Salinarimonas ramus. Morphological, chemotaxonomic and phylogenetic results did not affiliate the novel organism with any of the families in the Rhizobiales; therefore, HL-109T is representative of a new lineage, for which the name Saliniramus fredricksonii gen. nov., sp. nov. is proposed, with the type strain HL-109T (=JCM 31876T=DSM 102886T). In addition, examination of the phylogenetics of strain HL-109T and its nearest relatives, Salinarimonas ramus and Salinarimonasrosea, demonstrates that these halophiles form a clade distinct from the described families of the Rhizobiales. We further propose the establishment of a new family, Salinarimonadaceae fam. nov., to accommodate the genera Saliniramus and Salinarimonas (the type genus of the family).

7.
Int J Syst Evol Microbiol ; 68(5): 1591-1598, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29580321

RESUMO

A halophilic bacterial strain, HL-109T, was isolated from the unicyanobacterial consortium UCC-O, which was obtained from the photosynthetic mat of Hot Lake (Washington, USA). A polyphasic approach using phenotypic, genotypic and chemotaxonomic data was used to classify the strain within the order Rhizobiales. The organism stained Gram-negative and was a moderate thermophile with a growth optimum of 45 °C. It was obligately aerobic, heterotrophic and halophilic, growing in both NaCl and MgSO4 brines. The novel isolate had a polymorphic cellular morphology of short rods with occasional branching, and cells were monotrichous. The major fatty acids detected were C18 : 1, C18 : 0, C16 : 0 and C18 : cyc. Phylogenetic analysis of the 16S rRNA gene placed the strain in the order Rhizobiales and it shared 94 % identity with the type strain of its nearest relative, Salinarimonas ramus. Morphological, chemotaxonomic and phylogenetic results did not affiliate the novel organism with any of the families in the Rhizobiales; therefore, HL-109T is representative of a new lineage, for which the name Salinivirga fredricksonii gen. nov., sp. nov. is proposed, with the type strain HL-109T (=JCM 31876T=DSM 102886T). In addition, examination of the phylogenetics of strain HL-109T and its nearest relatives, Salinarimonas ramus and Salinarimonasrosea, demonstrates that these halophiles form a clade distinct from the described families of the Rhizobiales. We further propose the establishment of a new family, Salinarimonadaceae fam. nov., to accommodate the genera Salinivirga and Salinarimonas (the type genus of the family).


Assuntos
Alphaproteobacteria/classificação , Cianobactérias/classificação , Lagos/microbiologia , Filogenia , Alphaproteobacteria/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Cianobactérias/genética , Cianobactérias/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Washington
8.
Front Microbiol ; 8: 1304, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28751880

RESUMO

Two nearly identical unicyanobacterial consortia (UCC) were previously isolated from benthic microbial mats that occur in a heliothermal saline lake in northern Washington State. Carbohydrates are a primary source of carbon and energy for most heterotrophic bacteria. Since CO2 is the only carbon source provided, the cyanobacterium must provide a source of carbon to the heterotrophs. Available genomic sequences for all members of the UCC provide opportunity to investigate the metabolic routes of carbon transfer between autotroph and heterotrophs. Here, we applied a subsystem-based comparative genomics approach to reconstruct carbohydrate utilization pathways and identify glycohydrolytic enzymes, carbohydrate transporters and pathway-specific transcriptional regulators in 17 heterotrophic members of the UCC. The reconstructed metabolic pathways include 800 genes, near a one-fourth of which encode enzymes, transporters and regulators with newly assigned metabolic functions resulting in discovery of novel functional variants of carbohydrate utilization pathways. The in silico analysis revealed the utilization capabilities for 40 carbohydrates and their derivatives. Two Halomonas species demonstrated the largest number of sugar catabolic pathways. Trehalose, sucrose, maltose, glucose, and beta-glucosides are the most commonly utilized saccharides in this community. Reconstructed regulons for global regulators HexR and CceR include central carbohydrate metabolism genes in the members of Gammaproteobacteria and Alphaproteobacteria, respectively. Genomics analyses were supplemented by experimental characterization of metabolic phenotypes in four isolates derived from the consortia. Measurements of isolate growth on the defined medium supplied with individual carbohydrates confirmed most of the predicted catabolic phenotypes. Not all consortia members use carbohydrates and only a few use complex polysaccharides suggesting a hierarchical carbon flow from cyanobacteria to each heterotroph. In summary, the genomics-based identification of carbohydrate utilization capabilities provides a basis for future experimental studies of carbon flow in UCC.

9.
Front Microbiol ; 8: 1020, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28659875

RESUMO

The principles governing acquisition and interspecies exchange of nutrients in microbial communities and how those exchanges impact community productivity are poorly understood. Here, we examine energy and macronutrient acquisition in unicyanobacterial consortia for which species-resolved genome information exists for all members, allowing us to use multi-omic approaches to predict species' abilities to acquire resources and examine expression of resource-acquisition genes during succession. Metabolic reconstruction indicated that a majority of heterotrophic community members lacked the genes required to directly acquire the inorganic nutrients provided in culture medium, suggesting high metabolic interdependency. The sole primary producer in consortium UCC-O, cyanobacterium Phormidium sp. OSCR, displayed declining expression of energy harvest, carbon fixation, and nitrate and sulfate reduction proteins but sharply increasing phosphate transporter expression over 28 days. Most heterotrophic members likewise exhibited signs of phosphorus starvation during succession. Though similar in their responses to phosphorus limitation, heterotrophs displayed species-specific expression of nitrogen acquisition genes. These results suggest niche partitioning around nitrogen sources may structure the community when organisms directly compete for limited phosphate. Such niche complementarity around nitrogen sources may increase community diversity and productivity in phosphate-limited phototrophic communities.

10.
mSystems ; 2(2)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28289730

RESUMO

The mechanisms by which microbes interact in communities remain poorly understood. Here, we interrogated specific interactions between photoautotrophic and heterotrophic members of a model consortium to infer mechanisms that mediate metabolic coupling and acclimation to partnership. This binary consortium was composed of a cyanobacterium, Thermosynechococcus elongatus BP-1, which supported growth of an obligate aerobic heterotroph, Meiothermus ruber strain A, by providing organic carbon, O2, and reduced nitrogen. Species-resolved transcriptomic analyses were used in combination with growth and photosynthesis kinetics to infer interactions and the environmental context under which they occur. We found that the efficiency of biomass production and resistance to stress induced by high levels of dissolved O2 increased, beyond axenic performance, as a result of heterotrophic partnership. Coordinated transcriptional responses transcending both species were observed and used to infer specific interactions resulting from the synthesis and exchange of resources. The cyanobacterium responded to heterotrophic partnership by altering expression of core genes involved with photosynthesis, carbon uptake/fixation, vitamin synthesis, and scavenging of reactive oxygen species (ROS). IMPORTANCE This study elucidates how a cyanobacterial primary producer acclimates to heterotrophic partnership by modulating the expression levels of key metabolic genes. Heterotrophic bacteria can indirectly regulate the physiology of the photoautotrophic primary producers, resulting in physiological changes identified here, such as increased intracellular ROS. Some of the interactions inferred from this model system represent putative principles of metabolic coupling in phototrophic-heterotrophic partnerships.

11.
ISME J ; 11(6): 1434-1446, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28186498

RESUMO

Many microorganisms are unable to synthesize essential B vitamin-related enzyme cofactors de novo. The underlying mechanisms by which such microbes survive in multi-species communities are largely unknown. We previously reported the near-complete genome sequence of two ~18-member unicyanobacterial microbial consortia that maintain stable membership on defined medium lacking vitamins. Here we have used genome analysis and growth studies on isolates derived from the consortia to reconstruct pathways for biogenesis of eight essential cofactors and predict cofactor usage and precursor exchange in these communities. Our analyses revealed that all but the two Halomonas and cyanobacterial community members were auxotrophic for at least one cofactor. We also observed a mosaic distribution of salvage routes for a variety of cofactor precursors, including those produced by photolysis. Potentially bidirectional transporters were observed to be preferentially in prototrophs, suggesting a mechanism for controlled precursor release. Furthermore, we found that Halomonas sp. do not require cobalamin nor control its synthesis, supporting the hypothesis that they overproduce and export vitamins. Collectively, these observations suggest that the consortia rely on syntrophic metabolism of cofactors as a survival strategy for optimization of metabolic exchange within a shared pool of micronutrients.


Assuntos
Bactérias/metabolismo , Coenzimas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Consórcios Microbianos , Complexo Vitamínico B/metabolismo , Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana Transportadoras/genética
12.
Proc Natl Acad Sci U S A ; 114(7): E1205-E1214, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28137868

RESUMO

Only a small fraction of vitamin B12-requiring organisms are able to synthesize B12 de novo, making it a common commodity in microbial communities. Initially recognized as an enzyme cofactor of a few enzymes, recent studies have revealed additional B12-binding enzymes and regulatory roles for B12 Here we report the development and use of a B12-based chemical probe to identify B12-binding proteins in a nonphototrophic B12-producing bacterium. Two unexpected discoveries resulted from this study. First, we identified a light-sensing B12-binding transcriptional regulator and demonstrated that it controls folate and ubiquinone biosynthesis. Second, our probe captured proteins involved in folate, methionine, and ubiquinone metabolism, suggesting that it may play a role as an allosteric effector of these processes. These metabolic processes produce precursors for synthesis of DNA, RNA, and protein. Thereby, B12 likely modulates growth, and by limiting its availability to auxotrophs, B12-producing organisms may facilitate coordination of community metabolism.


Assuntos
Ácido Fólico/metabolismo , Halomonas/metabolismo , Metionina/metabolismo , Ubiquinona/metabolismo , Vitamina B 12/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Fenômenos Bioquímicos/efeitos da radiação , Gammaproteobacteria/genética , Gammaproteobacteria/metabolismo , Halomonas/genética , Ligação Proteica/efeitos da radiação , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Raios Ultravioleta , Vitamina B 12/química
13.
Microbiology (Reading) ; 162(6): 930-941, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27010745

RESUMO

Shewanella putrefaciens W3-18-1 harbours two periplasmic nitrate reductase (Nap) gene clusters, NapC-associated nap-alpha (napEDABC) and CymA-dependent nap-beta (napDAGHB), for dissimilatory nitrate respiration. CymA is a member of the NapC/NirT quinol dehydrogenase family and acts as a hub to support different respiratory pathways, including those on iron [Fe(III)] and manganese [Mn(III, IV)] (hydr)oxide, nitrate, nitrite, fumarate and arsenate in Shewanella strains. However, in our analysis it was shown that another NapC/NirT family protein, NapC, was only involved in nitrate reduction, although both CymA and NapC can transfer quinol-derived electrons to a periplasmic terminal reductase or an electron acceptor. Furthermore, our results showed that NapC could only interact specifically with the Nap-alpha nitrate reductase while CymA could interact promiscuously with Nap-alpha, Nap-beta and the NrfA nitrite reductase for nitrate and nitrite reduction. To further explore the difference in specificity, site-directed mutagenesis on both CymA and NapC was conducted and the phenotypic changes in nitrate and nitrite reduction were tested. Our analyses demonstrated that the Lys-91 residue played a key role in nitrate reduction for quinol oxidation and the Asp-166 residue might influence the maturation of CymA. The Asp-97 residue might be one of the key factors that influence the interaction of CymA with the cytochromes NapB and NrfA.


Assuntos
Nitrato Redutases/genética , Nitratos/metabolismo , Nitritos/metabolismo , Shewanella putrefaciens/metabolismo , Sequência de Aminoácidos/genética , Ácido Aspártico/metabolismo , Grupo dos Citocromos c/metabolismo , Hidroquinonas/metabolismo , Lisina/metabolismo , Mutagênese Sítio-Dirigida , Oxirredução , Alinhamento de Sequência , Shewanella putrefaciens/genética
14.
Extremophiles ; 20(3): 291-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26995682

RESUMO

The Norris Geyser Basin in Yellowstone National Park contains a large number of hydrothermal systems, which host microbial populations supported by primary productivity associated with a suite of chemolithotrophic metabolisms. We demonstrate that Metallosphaera yellowstonensis MK1, a facultative autotrophic archaeon isolated from a hyperthermal acidic hydrous ferric oxide (HFO) spring in Norris Geyser Basin, excretes formaldehyde during autotrophic growth. To determine the fate of formaldehyde in this low organic carbon environment, we incubated native microbial mat (containing M. yellowstonensis) from a HFO spring with (13)C-formaldehyde. Isotopic analysis of incubation-derived CO2 and biomass showed that formaldehyde was both oxidized and assimilated by members of the community. Autotrophy, formaldehyde oxidation, and formaldehyde assimilation displayed different sensitivities to chemical inhibitors, suggesting that distinct sub-populations in the mat selectively perform these functions. Our results demonstrate that electrons originally resulting from iron oxidation can energetically fuel autotrophic carbon fixation and associated formaldehyde excretion, and that formaldehyde is both oxidized and assimilated by different organisms within the native microbial community. Thus, formaldehyde can effectively act as a carbon and electron shuttle connecting the autotrophic, iron oxidizing members with associated heterotrophic members in the HFO community.


Assuntos
Processos Autotróficos , Transporte de Elétrons , Formaldeído/metabolismo , Processos Heterotróficos , Fontes Hidrotermais/microbiologia , Sulfolobales/metabolismo , Ácidos/análise , Carbono/metabolismo , Fontes Hidrotermais/química , Ferro/análise , Oxirredução , Sulfolobales/isolamento & purificação
15.
Appl Environ Microbiol ; 82(1): 255-67, 2016 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26497460

RESUMO

To gain a predictive understanding of the interspecies interactions within microbial communities that govern community function, the genomic complement of every member population must be determined. Although metagenomic sequencing has enabled the de novo reconstruction of some microbial genomes from environmental communities, microdiversity confounds current genome reconstruction techniques. To overcome this issue, we performed short-read metagenomic sequencing on parallel consortia, defined as consortia cultivated under the same conditions from the same natural community with overlapping species composition. The differences in species abundance between the two consortia allowed reconstruction of near-complete (at an estimated >85% of gene complement) genome sequences for 17 of the 20 detected member species. Two Halomonas spp. indistinguishable by amplicon analysis were found to be present within the community. In addition, comparison of metagenomic reads against the consensus scaffolds revealed within-species variation for one of the Halomonas populations, one of the Rhodobacteraceae populations, and the Rhizobiales population. Genomic comparison of these representative instances of inter- and intraspecies microdiversity suggests differences in functional potential that may result in the expression of distinct roles in the community. In addition, isolation and complete genome sequence determination of six member species allowed an investigation into the sensitivity and specificity of genome reconstruction processes, demonstrating robustness across a wide range of sequence coverage (9× to 2,700×) within the metagenomic data set.


Assuntos
Variação Genética , Metagenoma , Metagenômica/métodos , Consórcios Microbianos/genética , Algoritmos , Mapeamento Cromossômico , Biologia Computacional , Genoma Bacteriano , Halomonas/genética , Halomonas/crescimento & desenvolvimento , Halomonas/isolamento & purificação , Dados de Sequência Molecular , Filogenia , Rhodobacteraceae/genética , Rhodobacteraceae/isolamento & purificação , Análise de Sequência de DNA
16.
ACS Chem Biol ; 11(2): 345-54, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26669591

RESUMO

The rapid completion of microbial genomes is inducing a conundrum in functional gene discovery. Novel methods are needed to shorten the gap between characterizing a microbial genome and experimentally validating bioinformatically predicted functions. Of particular importance are transport mechanisms, which shuttle nutrients such as B vitamins and metabolites across cell membranes and are required for the survival of microbes ranging from members of environmental microbial communities to pathogens. Methods to accurately assign function and specificity for a wide range of experimentally unidentified and/or predicted membrane-embedded transport proteins, along with characterization of intracellular enzyme-cofactor associations, are needed to enable a significantly improved understanding of microbial biochemistry and physiology, microbial interactions, and microbial responses to perturbations. Chemical probes derived from B vitamins B1, B2, and B7 have allowed us to experimentally address the aforementioned needs by identifying B vitamin transporters and intracellular enzyme-cofactor associations through live cell labeling of the filamentous anoxygenic photoheterotroph, Chloroflexus aurantiacus J-10-fl, known to employ mechanisms for both B vitamin biosynthesis and environmental salvage. Our probes provide a unique opportunity to directly link cellular activity and protein function back to ecosystem and/or host dynamics by identifying B vitamin transport and cofactor-dependent interactions required for survival.


Assuntos
Proteínas de Bactérias/metabolismo , Chloroflexus/metabolismo , Complexo Vitamínico B/metabolismo , Transporte Biológico , Chloroflexus/citologia , Técnicas de Sonda Molecular , Imagem Óptica , Proteoma/metabolismo , Coloração e Rotulagem
17.
ISME J ; 10(1): 210-24, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26140529

RESUMO

The candidate archaeal phylum 'Aigarchaeota' contains microorganisms from terrestrial and subsurface geothermal ecosystems. The phylogeny and metabolic potential of Aigarchaeota has been deduced from several recent single-cell amplified genomes; however, a detailed description of their metabolic potential and in situ transcriptional activity is absent. Here, we report a comprehensive metatranscriptome-based reconstruction of the in situ metabolism of Aigarchaeota in an oxic, hot spring filamentous 'streamer' community. Fluorescence in situ hybridization showed that these newly discovered Aigarchaeota are filamentous, which is consistent with the presence and transcription of an actin-encoding gene. Aigarchaeota filaments are intricately associated with other community members, which include both bacteria (for example, filamentous Thermocrinis spp.) and archaea. Metabolic reconstruction of genomic and metatranscriptomic data suggests that this aigarchaeon is an aerobic, chemoorganoheterotroph with autotrophic potential. A heme copper oxidase complex was identified in the environmental genome assembly and highly transcribed in situ. Potential electron donors include acetate, fatty acids, amino acids, sugars and aromatic compounds, which may originate from extracellular polymeric substances produced by other microorganisms shown to exist in close proximity and/or autochthonous dissolved organic carbon (OC). Transcripts related to genes specific to each of these potential electron donors were identified, indicating that this aigarchaeon likely utilizes several OC substrates. Characterized members of this lineage cannot synthesize heme, and other cofactors and vitamins de novo, which suggests auxotrophy. We propose the name Candidatus 'Calditenuis aerorheumensis' for this aigarchaeon, which describes its filamentous morphology and its primary electron acceptor, oxygen.


Assuntos
Archaea/isolamento & purificação , Fontes Termais/microbiologia , Archaea/classificação , Archaea/genética , Ecossistema , Genoma Arqueal , Fontes Termais/análise , Hibridização in Situ Fluorescente , Metagenômica , Dados de Sequência Molecular , Filogenia
18.
Sci Rep ; 5: 16004, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26525576

RESUMO

To date, the proposed mechanisms of nitrogenase-driven photosynthetic H2 production by the diazotrophic unicellular cyanobacterium Cyanothece sp. ATCC 51142 have assumed that reductant and ATP requirements are derived solely from glycogen oxidation and cyclic-electron flow around photosystem I. Through genome-scale transcript and protein profiling, this study presents and tests a new hypothesis on the metabolic relationship between oxygenic photosynthesis and nitrogenase-mediated H2 production in Cyanothece 51142. Our results show that net-positive rates of oxygenic photosynthesis and increased expression of photosystem II reaction centers correspond and are synchronized with nitrogenase expression and H2 production. These findings provide a new and more complete view on the metabolic processes contributing to the energy budget of photosynthetic H2 production and highlight the role of concurrent photocatalytic H2O oxidation as a participating process.


Assuntos
Cyanothece/metabolismo , Hidrogênio/metabolismo , Nitrogenase/metabolismo , Oxigênio/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Análise por Conglomerados , Cyanothece/enzimologia , Cyanothece/genética , Metabolismo Energético , Perfilação da Expressão Gênica , Glicogênio/química , Glicogênio/metabolismo , Hidrogênio/química , Hidrogenase/genética , Hidrogenase/metabolismo , Cinética , Nitrogenase/genética , Oxirredução , Fotossíntese , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Proteômica , RNA Mensageiro/metabolismo , Água/química
19.
Environ Microbiol Rep ; 7(2): 204-10, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25345570

RESUMO

Bacteria from the Chloroflexi phylum are dominant members of phototrophic microbial mat communities in terrestrial thermal environments. Vitamins of B group are key intermediates (precursors) in the biosynthesis of indispensable enzyme cofactors driving numerous metabolic processes in all forms of life. A genomics-based reconstruction and comparative analysis of respective biosynthetic and salvage pathways and riboswitch regulons in over 20 representative Chloroflexi genomes revealed a widespread auxotrophy for some of the vitamins. The most prominent predicted phenotypic signature, auxotrophy for vitamins B1 and B7 was experimentally confirmed for the best studied model organism Chloroflexus aurantiacus. These observations along with identified candidate genes for the respective uptake transporters pointed to B vitamin cross-feeding as an important aspect of syntrophic metabolism in microbial communities. Inferred specificities of homologous substrate-binding components of ABC transporters for vitamins B1 (ThiY) and B2 (RibY) were verified by thermofluorescent shift approach. A functional activity of the thiamine-specific transporter ThiXYZ from C. aurantiacus was experimentally verified by genetic complementation in E. coli. Expanding the integrative approach, which was applied here for a comprehensive analysis of B-vitamin metabolism in Chloroflexi would allow reconstruction of metabolic interdependencies in microbial communities.


Assuntos
Chloroflexi/genética , Chloroflexi/metabolismo , Microbiologia Ambiental , Redes e Vias Metabólicas/genética , Complexo Vitamínico B/metabolismo , Chloroflexi/isolamento & purificação , Chloroflexi/fisiologia , Teste de Complementação Genética , Proteínas de Membrana Transportadoras , Interações Microbianas , Simbiose
20.
Proc Natl Acad Sci U S A ; 111(35): 12883-8, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25143589

RESUMO

Bacterial nanowires offer an extracellular electron transport (EET) pathway for linking the respiratory chain of bacteria to external surfaces, including oxidized metals in the environment and engineered electrodes in renewable energy devices. Despite the global, environmental, and technological consequences of this biotic-abiotic interaction, the composition, physiological relevance, and electron transport mechanisms of bacterial nanowires remain unclear. We report, to our knowledge, the first in vivo observations of the formation and respiratory impact of nanowires in the model metal-reducing microbe Shewanella oneidensis MR-1. Live fluorescence measurements, immunolabeling, and quantitative gene expression analysis point to S. oneidensis MR-1 nanowires as extensions of the outer membrane and periplasm that include the multiheme cytochromes responsible for EET, rather than pilin-based structures as previously thought. These membrane extensions are associated with outer membrane vesicles, structures ubiquitous in Gram-negative bacteria, and are consistent with bacterial nanowires that mediate long-range EET by the previously proposed multistep redox hopping mechanism. Redox-functionalized membrane and vesicular extensions may represent a general microbial strategy for electron transport and energy distribution.


Assuntos
Proteínas da Membrana Bacteriana Externa/fisiologia , Nanofios/ultraestrutura , Periplasma/fisiologia , Shewanella/metabolismo , Shewanella/ultraestrutura , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Biocombustíveis , Grupo dos Citocromos c/genética , Grupo dos Citocromos c/metabolismo , Transporte de Elétrons/fisiologia , Regulação Bacteriana da Expressão Gênica , Microscopia de Força Atômica , Modelos Químicos , Oxirredução , Periplasma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...