Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurotrauma ; 39(13-14): 979-998, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35293260

RESUMO

Traumatic brain injury (TBI) in children <4 years of age leads to long-term deficits in cognitive and learning abilities that can persist or even worsen as these children age into adolescence. In this study, the role of glucocorticoid receptor (GR) function in the dorsal hippocampus (DH) in hippocampal-dependent cognitive function and synaptic plasticity were assessed following injury to the 11-day-old rat. Brain injury produced significant impairments in spatial learning and memory in the Morris water maze in male and female rats at 1-month post-injury (adolescence), which was accompanied by impairments in induction and maintenance of long-term potentiation (LTP) in the CA1 region of the DH. Brain injury resulted in a significant decrease in the expression of the glucocorticoid-inducible gene, serum- and glucocorticoid-kinase 1 (sgk1), suggestive of an impairment in GR transcriptional activity within the hippocampus. Lentiviral transfection of the human GR (hGR) in the DH improved spatial learning and memory in the Morris water maze and attenuated LTP deficits following TBI. GR overexpression in the DH was also associated with a significant increase in the mRNA expression levels of sgk1, and the glutamate receptor subunits GluA1 and GluA2 within the hippocampus. Overall, these findings support an important role for dorsal hippocampal GR function in learning and memory deficits following pediatric TBI and suggest that these effects may be related to the regulation of glutamate receptor subunit expression in the DH.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Animais , Criança , Feminino , Glucocorticoides/metabolismo , Glucocorticoides/farmacologia , Hipocampo , Humanos , Potenciação de Longa Duração/fisiologia , Masculino , Aprendizagem em Labirinto , Plasticidade Neuronal/fisiologia , Ratos , Receptores de Glucocorticoides/metabolismo , Receptores de Glutamato/metabolismo , Aprendizagem Espacial
2.
Front Neurol ; 11: 601286, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33343501

RESUMO

There has been a growing interest in the potential of stem cell transplantation as therapy for pediatric brain injuries. Studies in pre-clinical models of pediatric brain injury such as Traumatic Brain Injury (TBI) and neonatal hypoxia-ischemia (HI) have contributed to our understanding of the roles of endogenous stem cells in repair processes and functional recovery following brain injury, and the effects of exogenous stem cell transplantation on recovery from brain injury. Although only a handful of studies have evaluated these effects in models of pediatric TBI, many studies have evaluated stem cell transplantation therapy in models of neonatal HI which has a considerable overlap of injury pathology with pediatric TBI. In this review, we have summarized data on the effects of stem cell treatments on histopathological and functional outcomes in models of pediatric brain injury. Importantly, we have outlined evidence supporting the potential for stem cell transplantation to mitigate pathology of pediatric TBI including neuroinflammation and white matter injury, and challenges that will need to be addressed to incorporate these therapies to improve functional outcomes following pediatric TBI.

3.
eNeuro ; 6(5)2019.
Artigo em Inglês | MEDLINE | ID: mdl-31541000

RESUMO

Manipulation of neuronal activity during the early postnatal period in monkeys has been largely limited to permanent lesion studies, which can be impacted by developmental plasticity leading to reorganization and compensation from other brain structures that can interfere with the interpretations of results. Chemogenetic tools, such as DREADDs (designer receptors exclusively activated by designer drugs), can transiently and reversibly activate or inactivate brain structures, avoiding the pitfalls of permanent lesions to better address important developmental neuroscience questions. We demonstrate that inhibitory DREADDs in the amygdala can be used to manipulate socioemotional behavior in infant monkeys. Two infant rhesus monkeys (1 male, 1 female) received AAV5-hSyn-HA-hM4Di-IRES-mCitrine injections bilaterally in the amygdala at 9 months of age. DREADD activation after systemic administration of either clozapine-N-oxide or low-dose clozapine resulted in decreased freezing and anxiety on the human intruder paradigm and changed the looking patterns on a socioemotional attention eye-tracking task, compared with vehicle administration. The DREADD-induced behaviors were reminiscent of, but not identical to, those seen after permanent amygdala lesions in infant monkeys, such that neonatal lesions produce a more extensive array of behavioral changes in response to the human intruder task that were not seen with DREADD-evoked inhibition of this region. Our results may help support the notion that the more extensive behavior changes seen after early lesions are manifested from brain reorganization that occur after permanent damage. The current study provides a proof of principle that DREADDs can be used in young infant monkeys to transiently and reversibly manipulate behavior.


Assuntos
Tonsila do Cerebelo/fisiologia , Comportamento Animal/fisiologia , Emoções/fisiologia , Modelos Animais , Comportamento Social , Animais , Animais Recém-Nascidos , Drogas Desenhadas/farmacologia , Feminino , Macaca mulatta , Masculino , Neurociências/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...