Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Ecol ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842637

RESUMO

Cerambycid species of the Spondylidinae subfamily are distributed worldwide and are known for being prolific invaders that infest conifers. In New Zealand, Arhopalus ferus (Mulsant), the burnt pine longhorn beetle, is well-established and requires monitoring at high-risk sites such as ports, airports, and sawmills as part of the requirements to meet pine log export standards set by the New Zealand Ministry of Primary Industries (MPI). Currently, its surveillance relies on traps baited with host volatiles (i.e., ethanol and α-pinene). We used volatile collections from adult beetles, electroantennograms, and field trapping bioassays to identify the pheromones emitted by the burnt pine longhorn beetle A. ferus and their effects on its behaviour. We show that A. ferus males emit mainly (E)-fuscumol and geranylacetone, as well as the minor components, α-terpinene and p-mentha-1,3,8-triene, and that all four compounds elicit a dose-dependent response in antennae of both sexes. Traps baited with the binary combination of geranylacetone plus fuscumol captured significantly more female A. ferus than did unbaited traps in two of three field experiments. α-Terpinene did not affect A. ferus trap catches and effects of p-mentha-1,3,8-triene on trap catch were not determined. Our findings provide further evidence of the use of fuscumol and geranylacetone as aggregation-sex pheromones by longhorn beetles in the Spondylidinae subfamily, and suggest that their deployment in survey traps may improve the efficacy of A. ferus monitoring in New Zealand and elsewhere.

2.
Environ Entomol ; 52(1): 56-66, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36377306

RESUMO

Hylurgus ligniperda (F.) and Hylastes ater (Paykull) are secondary bark beetles that have successfully spread beyond their native range, particularly into Pinus spp. plantations in the Southern Hemisphere. They feed on the phloem and cambial regions of highly stressed and recently dead Pinus spp. Here H. ligniperda and H. ater egg, larval, and pupal survival and development rates were modeled. Survival was variably influenced by temperatures depending on the life stage, but general trends were for H. ligniperda to tolerate warmer temperatures in comparison to H. ater. Nonlinear models showed 26, 29, and 34°C are the optimal temperature (maximum development rates) for the development of eggs, larvae, and pupae of H. ligniperda. In contrast, optimal temperature predictions were lower for H. ater, with estimates of 26, 22, and 23°C for the development of eggs, larvae, and pupae, respectively. H. ligniperda pre-imaginal stages were more tolerant to high temperatures, and H. ater pre-imaginal stages were more tolerant to low temperatures. Understanding the thermal requirements and limits for development for these two pests can assist in modeling emergence times, their current and potential species distribution and have potential phytosanitary applications.


Assuntos
Besouros , Pinus , Gorgulhos , Animais , Temperatura , Casca de Planta , Larva
3.
PLoS One ; 8(3): e58136, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23472147

RESUMO

Climate change affects the abundance, distribution and activity of natural enemies that are important for suppressing herbivore crop pests. Moreover, higher mean temperatures and increased frequency of climatic extremes are expected to induce different responses across trophic levels, potentially disrupting predator-prey interactions. Using field observations, we examined the response of an aphid host-parasitoid system to variation in temperature. Temperature was positively associated with attack rates by parasitoids, but also with a non-significant trend towards increased attack rates by higher-level hyperparasitoids. Elevated hyperparasitism could partly offset any benefit of climate warming to parasitoids, and would suggest that higher trophic levels may hamper predictions of predator-prey interactions. Additionally, the mechanisms affecting host-parasitoid dynamics were examined using controlled laboratory experiments that simulated both temperature increase and drought. Parasitoid fitness and longevity responded differently when exposed to each climatic variable in isolation, compared to the interaction of both variables at once. Although temperature increase or drought tended to positively affect the ability of parasitoids to control aphid populations, these effects were significantly reversed when the drivers were expressed in concert. Additionally, separate warming and drought treatments reduced parasitoid longevity, and although temperature increased parasitoid emergence success and drought increased offspring production, combined temperature and drought produced the lowest parasitoid emergence. The non-additive effects of different climate drivers, combined with differing responses across trophic levels, suggest that predicting future pest outbreaks will be more challenging than previously imagined.


Assuntos
Afídeos/parasitologia , Secas , Interações Hospedeiro-Parasita , Temperatura , Animais , Clima , Mudança Climática , Ecossistema , Feminino , Cadeia Alimentar , Geografia , Herbivoria , Nova Zelândia , Controle Biológico de Vetores , Distribuição de Poisson , Fatores de Tempo , Vespas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...