RESUMO
This study underscores the development of Ag hydrogel nanocomposites, as smart substrates for antibacterial uses, via innovative in situ reactive and reduction pathways. To this end, two different synthetic strategies were used. Firstly thiol-acrylate (PSA) based hydrogels were attained via thiol-ene and radical polymerization of polyethylene glycol (PEG) and polycaprolactone (PCL). As a second approach, polyurethane (PU) based hydrogels were achieved by condensation polymerization from diisocyanates and PCL and PEG diols. In fact, these syntheses rendered active three-dimensional (3D) hydrogel matrices which were used as nanoreactors for in situ reduction of AgNO3 to silver nanoparticles. A redox chemistry of stannous catalyst in PU hydrogel yielded spherical AgNPs formation, even at 4 °C in the absence of external reductant; and an appropriate thiol-functionalized polymeric network promoted spherical AgNPs well dispersed through PSA hydrogel network, after heating up the swollen hydrogel at 103 °C in the presence of citrate-reductant. Optical and swelling behaviors of both series of hydrogel nanocomposites were investigated as key factors involved in their antimicrobial efficacy over time. Lastly, in vitro antibacterial activity of Ag loaded hydrogels exposed to Pseudomona aeruginosa and Escherichia coli strains indicated a noticeable sustained inhibitory effect, especially for Ag-PU hydrogel nanocomposites with bacterial inhibition growth capabilities up to 120 h cultivation.
RESUMO
This research demonstrates that a nylon nanofiber (NNF) mat can be an effective mechanical reinforcement to polyaniline (PANI) thin films. Nanofibers of ca. 250 nm diameter were produced by electrospinning of a nylon 6 solution in formic acid. Scanning electron microscopy showed that the solution impregnation method utilized was effective to embed the nanofibers into the PANI matrix. The effectiveness of NNFs as a mechanical reinforcement of a PANI thin film was assessed via dynamic mechanical analysis in tension mode. The as-cast PANI films displayed a tensile dynamic modulus, E', of ca. 0.65 GPa at room temperature. Scanning in the temperature showed that the PANI film has a usage temperature of up to about 80 degrees C, with this being limited by its glass transition temperature, and over this temperature range, the elastic modulus was nearly independent of the temperature. On the other hand, the PANI-NNF composite displayed a significantly higher tensile modulus at room temperature (1.1 GPa) and its usage temperature was extended up to just over 200 degrees C, with this being limited by the melting transition of nylon 6 (at 220 degrees C). The results therefore showed that the NNF mat increased the usage temperature of PANI films over 100 degrees C, opening up applications for PANI membranes.