Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 88: 41-47, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30125786

RESUMO

Meniscectomy significantly change the kinematics of the knee joint by reducing the contact area between femoral condyles and the tibial plateau, but the shift in the contact area has been poorly described. The aim of our investigation was to measure the shift of the tibiofemoral contact area occurring after meniscectomy. We used laser scans combined to surface texturing for measuring the 3D position and area of the femoral and tibial surfaces involved in the joint. In particular, natural condyles (porcine model) were analysed and the reverse engineering approach was used for the interpretation of the results from compression tests and local force measurements in conjunction with staining techniques. The results suggested that laser scans combined to surface texturing may be considered as a powerful tool to investigate the stained contours of the contact area. Beside the largely documented reduction of contact area and local pressure increase, a shift of the centroid of the contact area toward the intercondylar notch was measured after meniscectomy. As a consequence of the contact area shift and pressure increase, cartilage degeneration close to the intercondylar notch may occur.


Assuntos
Fêmur/cirurgia , Lasers , Fenômenos Mecânicos , Meniscectomia , Tíbia/cirurgia , Animais , Fenômenos Biomecânicos , Propriedades de Superfície
2.
Materials (Basel) ; 11(2)2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29466299

RESUMO

Experimental/theoretical analyses have already been performed on poly(ε-caprolactone) (PCL) loaded with organic-inorganic fillers (PCL/TiO2 and PCL/ZrO2) to find a correlation between the results from the small punch test and Young's modulus of the materials. PCL loaded with Ti2 (PCL = 12, TiO2 = 88 wt %) and Zr2 (PCL = 12, ZrO2 = 88 wt %) hybrid fillers showed better performances than those obtained for the other particle composition. In this context, the aim of current research is to provide further insight into the mechanical properties of PCL loaded with sol-gel-synthesized organic-inorganic hybrid fillers for bone tissue engineering. For this reason, theoretical analyses were performed by the finite element method. The results from the small punch test and Young's modulus of the materials were newly correlated. The obtained values of Young's modulus (193 MPa for PCL, 378 MPa for PCL/Ti2 and 415 MPa for PCL/Zr2) were higher than those obtained from a previous theoretical modelling (144 MPa for PCL, 282 MPa for PCL/Ti2 and 310 MPa for PCL/Zr2). This correlation will be an important step for the evaluation of Young's modulus, starting from the small punch test data.

3.
J Appl Biomater Biomech ; 9(2): 151-63, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22065393

RESUMO

Polymer-based composite materials are ideal for applications where high stiffness-to-weight and strength-to-weight ratios are required. From aerospace and aeronautical field to biomedical applications, fiber-reinforced polymers have replaced metals, thus emerging as an interesting alternative. As widely reported, the mechanical behavior of the composite materials involves investigation on micro- and macro-scale, taking into consideration micromechanics, macromechanics and lamination theory. Clinical situations often require repairing connective tissues and the use of composite materials may be suitable for these applications because of the possibility to design tissue substitutes or implants with the required mechanical properties. Accordingly, this review aims at stressing the importance of fiber-reinforced composite materials to make advanced and biomimetic prostheses with tailored mechanical properties, starting from the basic principle design, technologies, and a brief overview of composites applications in several fields. Fiber-reinforced composite materials for artificial tendons, ligaments, and intervertebral discs, as well as for hip stems and mandible models will be reviewed, highlighting the possibility to mimic the mechanical properties of the soft and hard tissues that they replace.


Assuntos
Materiais Biocompatíveis/química , Materiais Biomiméticos/química , Biomimética/métodos , Resinas Compostas/química , Próteses e Implantes , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...