Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Astron Astrophys ; 6372020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32565548

RESUMO

CONTEXT: Sulphur is one of the most abundant elements in the Universe. Surprisingly, sulphuretted molecules are not as abundant as expected in the interstellar medium and the identity of the main sulphur reservoir is still an open question. AIMS: Our goal is to investigate the H2S chemistry in dark clouds, as this stable molecule is a potential sulphur reservoir. METHODS: Using millimeter observations of CS, SO, H2S, and their isotopologues, we determine the physical conditions and H2S abundances along the cores TMC 1-C, TMC 1-CP, and Barnard 1b. The gas-grain model Nautilus is used to model the sulphur chemistry and explore the impact of photo-desorption and chemical desorption on the H2S abundance. RESULTS: Our modeling shows that chemical desorption is the main source of gas-phase H2S in dark cores. The measured H2S abundance can only be fitted if we assume that the chemical desorption rate decreases by more than a factor of 10 when n H > 2 × 104. This change in the desorption rate is consistent with the formation of thick H2O and CO ice mantles on grain surfaces. The observed SO and H2S abundances are in good agreement with our predictions adopting an undepleted value of the sulphur abundance. However, the CS abundance is overestimated by a factor of 5 - 10. Along the three cores, atomic S is predicted to be the main sulphur reservoir. CONCLUSIONS: The gaseous H2S abundance is well reproduced, assuming undepleted sulphur abundance and chemical desorption as the main source of H2S. The behavior of the observed H2S abundance suggests a changing desorption efficiency, which would probe the snowline in these cold cores. Our model, however, highly overestimates the observed gas-phase CS abundance. Given the uncertainty in the sulphur chemistry, we can only conclude that our data are consistent with a cosmic elemental S abundance with an uncertainty of a factor of 10.

2.
Astron Astrophys ; 6242019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31156252

RESUMO

GEMS is an IRAM 30m Large Program whose aim is determining the elemental depletions and the ionization fraction in a set of prototypical star-forming regions. This paper presents the first results from the prototypical dark cloud TMC 1. Extensive millimeter observations have been carried out with the IRAM 30m telescope (3 mm and 2 mm) and the 40m Yebes telescope (1.3 cm and 7 mm) to determine the fractional abundances of CO, HCO+, HCN, CS, SO, HCS+, and N2H+ in three cuts which intersect the dense filament at the well-known positions TMC 1-CP, TMC 1-NH3, and TMC 1-C, covering a visual extinction range from A V ~ 3 to ~20 mag. Two phases with differentiated chemistry can be distinguished: i) the translucent envelope with molecular hydrogen densities of 1-5×103 cm-3; and ii) the dense phase, located at A V > 10 mag, with molecular hydrogen densities >104 cm-3. Observations and modeling show that the gas phase abundances of C and O progressively decrease along the C+/C/CO transition zone (A V ~ 3 mag) where C/H ~ 8×10-5 and C/O~0.8-1, until the beginning of the dense phase at A V ~ 10 mag. This is consistent with the grain temperatures being below the CO evaporation temperature in this region. In the case of sulfur, a strong depletion should occur before the translucent phase where we estimate a S/H ~ (0.4 - 2.2) ×10-6, an abundance ~7-40 times lower than the solar value. A second strong depletion must be present during the formation of the thick icy mantles to achieve the values of S/H measured in the dense cold cores (S/H ~8×10-8). Based on our chemical modeling, we constrain the value of ζ H2 to ~ (0.5 - 1.8) ×10-16 s-1 in the translucent cloud.

3.
Mon Not R Astron Soc ; 469(1): 612-620, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28690343

RESUMO

We present a detailed theoretical study of the rotational excitation of CH+ due to reactive and nonreactive collisions involving C+(2P), H2, CH+, H and free electrons. Specifically, the formation of CH+ proceeds through the reaction between C+(2P) and H2(νH2 = 1, 2), while the collisional (de)excitation and destruction of CH+ is due to collisions with hydrogen atoms and free electrons. State-to-state and initial-state-specific rate coefficients are computed in the kinetic temperature range 10-3000 K for the inelastic, exchange, abstraction and dissociative recombination processes using accurate potential energy surfaces and the best scattering methods. Good agreement, within a factor of 2, is found between the experimental and theoretical thermal rate coefficients, except for the reaction of CH+ with H atoms at kinetic temperatures below 50 K. The full set of collisional and chemical data are then implemented in a radiative transfer model. Our Non-LTE calculations confirm that the formation pumping due to vibrationally excited H2 has a substantial effect on the excitation of CH+ in photon-dominated regions. In addition, we are able to reproduce, within error bars, the far-infrared observations of CH+ toward the Orion Bar and the planetary nebula NGC 7027. Our results further suggest that the population of νH2 = 2 might be significant in the photon-dominated region of NGC 7027.

4.
Astrophys J ; 850(1)2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29880977

RESUMO

Chemical kinetics of neutral-neutral gas-phase reactions at ultralow temperatures is a fascinating research subject with important implications on the chemistry of complex organic molecules in the interstellar medium (T∼10-100K). Scarce kinetic information is currently available for this kind of reactions at T<200 K. In this work we use the CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme, which means Reaction Kinetics in a Uniform Supersonic Flow) technique to measure for the first time the rate coefficients (k) of the gas-phase OH+H2CO reaction between 22 and 107 K. k values greatly increase from 2.1×10-11 cm3 s-1 at 107 K to 1.2×10-10 cm3 s-1 at 22 K. This is also confirmed by quasi-classical trajectories (QCT) at collision energies down to 0.1 meV performed using a new full dimension and ab initio potential energy surface, recently developed which generates highly accurate potential and includes long range dipole-dipole interactions. QCT calculations indicate that at low temperatures HCO is the exclusive product for the OH+H2CO reaction. In order to revisit the chemistry of HCO in cold dense clouds, k is reasonably extrapolated from the experimental results at 10K (2.6×10-10 cm3 s-1). The modeled abundances of HCO are in agreement with the observations in cold dark clouds for an evolving time of 105-106 yrs. The different sources of production of HCO are presented and the uncertainties in the chemical networks discussed. This reaction can be expected to be a competitive process in the chemistry of prestellar cores. The present reaction is shown to account for a few percent of the total HCO production rate. Extensions to photodissociation regions and diffuse clouds environments are also commented.

5.
Astron Astrophys ; 5962016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28003686

RESUMO

As many organic molecules, formic acid (HCOOH) has two conformers (trans and cis). The energy barrier to internal conversion from trans to cis is much higher than the thermal energy available in molecular clouds. Thus, only the most stable conformer (trans) is expected to exist in detectable amounts. We report the first interstellar detection of cis-HCOOH. Its presence in ultraviolet (UV) irradiated gas exclusively (the Orion Bar photodissociation region), with a low trans-to-cis abundance ratio of 2.8 ± 1.0, supports a photoswitching mechanism: a given conformer absorbs a stellar photon that radiatively excites the molecule to electronic states above the interconversion barrier. Subsequent fluorescent decay leaves the molecule in a different conformer form. This mechanism, which we specifically study with ab initio quantum calculations, was not considered in Space before but likely induces structural changes of a variety of interstellar molecules submitted to UV radiation.

6.
Astron Astrophys ; 5932016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27708436

RESUMO

CONTEXT: Barnard B1b has revealed as one of the most interesting globules from the chemical and dynamical point of view. It presents a rich molecular chemistry characterized by large abundances of deuterated and complex molecules. Furthermore, it hosts an extremely young Class 0 object and one candidate to First Hydrostatic Core (FHSC) proving the youth of this star forming region. AIMS: Our aim is to determine the cosmic ray ionization rate, [Formula: see text], and the depletion factors in this extremely young star forming region. These parameteres determine the dynamical evolution of the core. METHODS: We carried out a spectral survey towards Barnard 1b as part of the IRAM Large program ASAI using the IRAM 30-m telescope at Pico Veleta (Spain). This provided a very complete inventory of neutral and ionic C-, N- and S- bearing species with, up to our knowledge, the first secure detections of the deuterated ions DCS+ and DOCO+. We use a state-of-the-art pseudo-time-dependent gas-phase chemical model that includes the ortho and para forms of [Formula: see text] and [Formula: see text] to determine the local value of the cosmic ray ionization rate and the depletion factors. RESULTS: Our model assumes n(H2)=105 cm-3 and T k =12 K, as derived from our previous works. The observational data are well fitted with ζH2 between 3×10-17 s-1 and 10-16 s-1, and the following elemental abundances: O/H=3 10-5, N/H=6.4-8 10-5, C/H=1.7 10-5 and S/H between 6.0 10-7 and 1.0 10-6. The large number of neutral/protonated species detected, allows us to derive the elemental abundances and cosmic ray ionization rate simultaneously. Elemental depletions are estimated to be ~10 for C and O, ~1 for N and ~25 for S. CONCLUSIONS: Barnard B1b presents similar depletions of C and O than those measured in pre-stellar cores. The depletion of sulfur is higher than that of C and O but not as extreme as in cold cores. In fact, it is similar to the values found in some bipolar outflows, hot cores and photon-dominated regions. Several scenarios are discussed to account for these peculiar abundances. We propose that it is the consequence of the initial conditions (important outflows and enhanced UV fields in the surroundings) and a rapid collapse (~0.1 Myr) that permits to maintain most S- and N-bearing species in gas phase to great optical depths. The interaction of the compact outflow associated with B1b-S with the surrounding material could enhance the abundances of S-bearing molecules, as well.

7.
J Phys Chem A ; 119(50): 11951-62, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-25822338

RESUMO

Accurate quantum reactive scattering time-dependent wave packet close-coupling calculations have been carried out to determine total reaction probabilities and integral cross sections for the O(+) + H2 → OH(+) + H reaction in a range of collision energies from 10(-3) eV up to 1.0 eV for the H2 rovibrational states (v = 0; j = 0, 1, 2) and (v = 1; j = 0) using the potential energy surface (PES) by Martínez et al. As expected for a barrierless reaction, the reaction cross section decays rapidly with collision energy, Ec, following a behavior that nearly corresponds to that predicted by the Langevin model. Rotational excitation of H2 into j = 1, 2 has a very moderate effect on reactivity, similarly to what happens with vibrational excitation below Ec ≈ 0.3 eV. However, at higher collision energies the cross section increases notably when H2 is promoted to v = 1. This effect is explained by resorting to the effective potentials in the entrance channel. The integral cross sections have been used to calculate rate constants in the temperature range 200-1000 K. A good overall agreement has been found with the available experimental data on integral cross sections and rate constants. In addition, time-independent quantum mechanical and quasi-classical trajectory (QCT) calculations have been performed on the same PES aimed to compare the various methodologies and to discern the detailed mechanism of the title reaction. In particular, the analysis of individual trajectories has made it possible to explain, in terms of the coupling between reagent relative velocity and the topography of the PES, the presence of a series of alternating maxima and minima in the collision energy dependence of the QCT reaction probabilities for the reactions with H2(v=0,1,j=0), which are absent in the quantum mechanical calculations.

8.
J Chem Phys ; 137(11): 114309, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22998264

RESUMO

We present wave packet calculations of total and state-to-state reaction probabilities and integral cross sections for the nonadiabatic dynamics of the O((3)P)+HF → F((2)P)+OH((2)Π) reaction at hyperthermal collision energies ranging from 1.2 to 2.4 eV. The validity of the centrifugal sudden approximation is discussed for the title reaction and a comprehensive investigation of the influence of nonadiabatic effects on the dynamics of this reactive system at high (hyperthermal) collision energies is presented. In general, nonadiabatic effects are negligible for averaged observables, such as total reaction probabilities and integral cross sections, but they are clearly observed in detailed observables such as rotationally state-resolved reaction probabilities. A critical discussion of nonadiabatic effects on the dynamics of the title reaction is carried out by comparing with the reverse reaction and the characteristics of the adiabatic and diabatic potential energy surfaces involved.

9.
J Chem Phys ; 136(16): 164309, 2012 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-22559484

RESUMO

The dynamics of the C((3)P)+OH(X(2)Π) → CO(a(3)Π)+H((2)S) on its second excited potential energy surface, 1(4)A", have been investigated in detail by means of an accurate quantum mechanical (QM) time-dependent wave packet (TDWP) approach. Reaction probabilities for values of the total angular momentum J up to 50 are calculated and integral cross sections for a collision energy range which extends up to 0.1 eV are shown. The comparison with quasi-classical trajectory (QCT) and statistical methods reveals the important role played by the double well structure existing in the potential energy surface. The TDWP differential cross sections exhibit a forward-backward symmetry which could be interpreted as indicative of a complex-forming mechanism governing the dynamics of the process. The QM statistical method employed in this study, however, is not capable to reproduce the main features of the possible insertion nature in the reactive collision. The ability to stop individual trajectories selectively at specific locations inside the potential energy surface makes the QCT version of the statistical approach a better option to understand the overall dynamics of the process.

10.
J Chem Phys ; 136(12): 121101, 2012 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-22462825

RESUMO

A quantum control mechanism is proposed for molecular fragmentation processes within a scenario grounded on the quantum Zeno effect. In particular, we focus on the van der Waals Ne-Br(2) complex, which displays two competing dissociation channels via vibrational and electronic predissociation. Accordingly, realistic three-dimensional wave packet simulations are carried out by using ab initio interaction potentials recently obtained to reproduce available experimental data. Two numerical models to simulate the repeated measurements are reported and analyzed. It is found that the otherwise fast vibrational predissociation is slowed down in favor of the slow electronic (double fragmentation) predissociation, which is enhanced by several orders of magnitude. Based on these theoretical predictions, some hints to experimentalists to confirm their validity are also proposed.

11.
J Phys Chem A ; 116(1): 132-8, 2012 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-22129246

RESUMO

The dynamics and kinetics of the Li + H2⁺ reaction and its isotopic variants (D2⁺ and T2⁺) have been studied by using a time-dependent wave packet (TDWP) coupled-channel (CC) method on the ab initio potential energy surface (PES) of Martinazzo et al. [J. Chem. Phys. 2003, 119, 21]. Total initial v = 0, j = 0 state-selected reaction probabilities for the Li + H2⁺ reaction and its isotopic variants have been calculated from the threshold up to 1 eV for total angular momenta J from 0 to 90. Integral cross sections have been evaluated from the reaction probabilities at collision energies from threshold (≈0.2 eV) up to 1.0 eV collision. The calculated rate constants as a function of temperature show an Arrhenius type behavior in the 200 ≤ T ≤ 1000 K temperature interval. It has been found to be a considerable large intermolecular kinetic isotope effect. The TDWP-CC results are in overall good agreement with those obtained applying the TDWP Centrifugal-Sudden (CS) approximation, showing that the CS approximation is rather accurate for the title reaction.

12.
Phys Chem Chem Phys ; 13(30): 13656-69, 2011 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-21725558

RESUMO

A complete quantum study for the state-to-state Li + HF(v,j,m) → LiF(v',j',Ω') + H reactive collisions has been performed using a wave packet method, for different initial rotational states and helicity states of the reactants. The state-to-state differential cross section has been simulated, and the polarization of products extracted. It is found that the reactivity is enhanced for nearly collinear collisions, which produces a vibrational excitation of HF, needed to overcome the late barrier. It is also found that LiF(v' = 0) products are preferentially forward scattered, while vibrationally excited LiF(v' = 1 and 2) are backward scattered. These results are interpreted with a simple reaction mechanism, based on the late character and bent geometry of the transition state, originating from a covalent/ionic crossing, which consists of two steps: the arrival at the transition state and the dissociation. In the first step, in order to get to the saddle point some HF vibrational excitation is required, which favors head-on collisions and therefore low values of m. In the second step a fast dissociation of H atom takes place, which is explained by the ionic Li(+)F(-)H character of the bent transition state: the FH(-) is repulsive making that H depart rapidly leaving a highly rotating LiF molecule. For the higher energy analyzed, where resonances slightly contribute, the orientation and alignment of product rotational states, referred to as reactants frame (with the z-axis parallel to k), are approximately constant with the scattering angle. The alignment is close to -1, showing that j' is perpendicular to k, while starting from initial states with well defined rotational orientation, as states with pure m values, the final rotational are also oriented. It is also found that when using products frame (with the z'-axis parallel to k') the rotational alignment and orientation of products varies a lot with the scattering angle just because the z' axis changes from being parallel to anti-parallel to k when varying from θ = 0 to π.

13.
J Chem Phys ; 133(2): 024306, 2010 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-20632754

RESUMO

In this work a reliable full nine-dimensional potential energy surface for studying the dynamics of H(5)(+) is constructed, which is completely symmetric under any permutation of the nuclei. For this purpose, we develop a triatoms-in-molecules method as an extension of the more common diatoms-in-molecules one, which allows a very accurate description of the asymptotic regions by including correctly the charge-induced dipole and quadrupole interactions. Moreover, this treatment provides a semiquantitative description of all the topological features of the global potential compared with coupled cluster results. In particular, the hop of the proton between two H(2) fragments produces a double well in the potential. This resonant structure involving the five atoms produces a stabilization, lowering the barrier, and the triatoms-in-molecules yields to a barrier significantly higher than the ab initio results. Therefore, to improve the triatomics-in-molecules potential surface, two five-body terms are added, which are fitted to more than 110,000 coupled-cluster ab initio points. The global potential energy surface thus obtained in this work has an overall root mean square error of 0.079 kcal/mol for energies below 27 kcal/mol above the global well. The features of the potential are described and compared with previous available surfaces.

14.
J Chem Phys ; 132(24): 244303, 2010 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-20590189

RESUMO

The Ar(3) system has been studied between T=0 K and T=40 K by means of a path-integral Monte Carlo (PIMC) method. The behavior of the average energy in terms of the temperature has been explained by comparison with results obtained with the thermal averaged rovibrational spectra estimated via: (i) a quantum mechanical method based on distributed Gaussian functions for the interparticle distances and (ii) an analytical model which precisely accounts for the participation of the dissociative continua Ar(2)+Ar and Ar+Ar+Ar. Beyond T approximately 20 K, the system explores floppier configurations than the rigid equilateral geometry, as linear and Ar-Ar(2)-like arrangements, and fragmentates around T approximately 40 K. A careful investigation of the specific heat in terms of a confining radius in the PIMC calculation seems to discard a proper phase transition as in larger clusters, in apparent contradiction with previous reports of precise values for a liquid-gas transition. The onset of this noticeable change in the dynamics of the trimer occurs, however, at a remarkably low value of the temperature in comparison with Ar(n) systems formed with more Ar atoms. Quantum mechanical effects are found of relevance at T

15.
J Phys Chem A ; 113(52): 14488-501, 2009 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-20028163

RESUMO

The state-to-state differential cross sections for some atom + diatom reactions have been calculated using a new wave packet code, MAD-WAVE3, which is described in some detail and uses either reactant or product Jacobi coordinates along the propagation. In order to show the accuracy and efficiency of the coordinate transformation required when using reactant Jacobi coordinates, as recently proposed [ J. Chem. Phys. 2006 , 125 , 054102 ], the method is first applied to the H + D(2) reaction as a benchmark, for which exact time-independent calculations are also performed. It is found that the use of reactant coordinates yields accurate results, with a computational effort slightly lower than that when using product coordinates. The H(+) + D(2) reaction, with the same masses but a much deeper insertion well, is also studied and exhibits a completely different mechanism, a complex-forming one which can be treated by statistical methods. Due to the longer range of the potential, product Jacobi coordinates are more efficient in this case. Differential cross sections for individual final rotational states of the products are obtained based on exact dynamical calculations for some selected total angular momenta, combined with the random phase approximation to save the high computational time required to calculate all partial waves with very long propagations. The results obtained are in excellent agreement with available exact time-independent calculations. Finally, the method is applied to the Li + HF system for which reactant coordinates are very well suited, and quantum differential cross sections are not available. The results are compared with recent quasiclassical simulations and experimental results [J. Chem. Phys. 2005, 122, 244304]. Furthermore, the polarization of the product angular momenta is also analyzed as a function of the scattering angle.

16.
J Chem Phys ; 131(23): 234110, 2009 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-20025317

RESUMO

A new method is proposed to partition the density of a system in two portions. The density on each subsystem is the solution of a Fock equation modified by the addition of an embedding potential. This embedding potential is obtained iteratively by minimizing the difference between the electronic densities of the total system and the sum of the subsystems. Thus, the electronic density partition and the embedding potential are obtained at the same time within the procedure, guaranteeing the v-representability of the densities partitioned. This fact is a considerable improvement of a recently proposed embedding potential inversion technique, [O. Roncero, M. P. de Lara-Castells, P. Villarreal, F. Flores, J. Ortega, M. Paniagua, and A. Aguado, J. Chem. Phys. 129, 184104 (2008)], in which the embedding potential is obtained once the electronic density is previously partitioned. The method is first applied to a linear H(10) chain to illustrate how it works. The orbitals obtained are localized on each subsystem, and can be used to include local electronic correlation with currently available ab initio programs. Finally, the method is applied to include the electronic correlation needed to describe the van der Waals interaction between H(10) chains and H(2) molecules, of approximately 12 meV, giving very accurate results.

17.
Phys Chem Chem Phys ; 11(43): 10122-31, 2009 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-19865768

RESUMO

The reactivity of H(2) on several gold clusters is studied using density functional theory with generalized gradient approximation methods, as model systems designed to study the main effects determining their catalytic properties under controlled conditions. Border effects are studied in finite linear gold chains of increasing size and compared with the corresponding periodic systems. In these linear chains, the reaction can proceed with no barrier along the minimum energy path, presenting a deep chemisorption well of approximately 1.4 eV. The mechanism presents an important dependence on the initial attacking site of the chain. Linear Au(4) chains joined to model-nanocontacts, formed by 2 or 3 gold atoms, in a planar triangle or in a pyramid, respectively, are also studied. The reaction barriers found in these two cases are approximately 0.24 and 0.16 eV, respectively, corresponding to H(2) attacking the more coordinated edge atom of the linear chain. The study is extended to planar clusters with coordinations IV and VI, for which higher H(2) dissociation barriers are found. However, when the planar gold clusters are folded, and the Au-Au distances elongated, the reactivity increases considerably. This is not due to a change of coordination, but to a larger flexibility of the gold orbitals to form bonds with hydrogen atoms, when the planar sd-hybridization is broken. Finally, it is concluded that the major factor determining the reactivity of gold clusters is not strictly the coordination of gold atoms but their binding structure and some border effects.

18.
J Chem Phys ; 130(15): 154301, 2009 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-19388740

RESUMO

A detailed study of the rovibrational spectrum of the Ar trimer is performed by means of an exact hyperspherical coordinate (HC) method and a variational approach based on distributed Gaussian functions (DGFs) to describe the interparticle distances. The good agreement observed between the energy levels obtained with both procedures for high values of the total angular momentum (J=15 and 20) reveals the quality of the DGF method to describe the rotation of the title system. Rotational constants for the lowest bound states, obtained as averages for each vibrational state, have been obtained and compared to previous results. A detailed analysis of density probability functions obtained by means of the HC approach for rovibrational states at J=0 and 20 shows close similitudes thus supporting the vibration-rotation separation adopted within the DGF scheme for the Ar(3) system.

19.
J Chem Phys ; 129(18): 184104, 2008 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-19045383

RESUMO

A new embedding method to include local correlation in large systems is proposed. In this method the density of the whole system, calculated via density functional theory approaches, is partitioned in two pieces, one corresponding to the subsystem of interest and the rest to the environment. In the second step, an embedding potential is obtained iteratively using as a driving force the self-repulsion due to the density difference, in a similar form as proposed by Zhao et al. [Phys. Rev. A 50, 2138 (1994)], to obtain the "exact" exchange-correlation functional. Such potential is added to the Fock equation to build the localized molecular orbitals which are further used to include the local electronic correlation in the subsystem of interest. This method is an alternative to the previous DFT-based embedding methods first proposed by Wesolowski and Washell [J. Phys. Chem. 97, 8050 (1993)] and after enhanced by Govind et al. [J. Chem. Phys. 110, 7677 (1999)] and adapted to metal extended systems, which use density functionals to describe the kinetic energy contribution to the embedding potential, whose precise form has been largely treated in the literature and its crucial role is discussed here. The method is applied to hydrogen chains and its van der Waals interaction with H(2). The results obtained are in very good agreement with exact calculations performed on the whole system, which demonstrates that the method proposed is a very promising route to introduce correlation in large systems.

20.
J Chem Phys ; 128(16): 164313, 2008 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-18447445

RESUMO

Helium clusters doped with diatomic molecules, He(N)-BC, have been recently studied by means of a quantum-chemistry-like approach. The model treats He atoms as "electrons" and dopants as "nuclei" in standard electronic structure calculations. Due to the large mass difference between He atoms and electrons, and to the replacement of Coulomb interactions by intermolecular potentials, it is worth assessing up to what extent are the approximations involved in this model, i.e., decoupling of the BC rotation from the He-atom orbital angular momenta and Born-Oppenheimer separation of the BC stretch versus the He motions, accurate enough. These issues have been previously tackled elsewhere for the (4)He(2)-Br(2)(X) system, which contains a heavy dopant [Roncero et al., Int. J. Quantum Chem. 107, 2756 (2007)]. Here, we consider a similar cluster but with a much lighter dopant such as N(2)(X). Although the model does not provide the correct energy levels for the cluster, positions and intensities of the main detectable lines of the vibrotational Raman spectrum at low temperature are accurately reproduced.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...