Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 161(4)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39037135

RESUMO

We report a study on the reactive collision of S+(4S) with H2, HD, and D2 combining guided ion beam experiments and quantum-mechanical calculations. It is found that the reactive cross sections reflect the existence of two different mechanisms, one being spin-forbidden. Using different models, we demonstrate that the spin-forbidden pathway follows a complex mechanism involving three electronic states instead of two as previously thought. The good agreement between theory and experiment validates the methodology employed and allows us to fully understand the reaction mechanism. This study also provides new fundamental insights into the intersystem crossing process.

2.
J Chem Phys ; 160(18)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38738612

RESUMO

C H 3 + , a cornerstone intermediate in interstellar chemistry, has recently been detected for the first time by using the James Webb Space Telescope. The photodissociation of this ion is studied here. Accurate explicitly correlated multi-reference configuration interaction ab initio calculations are done, and full-dimensional potential energy surfaces are developed for the three lower electronic states, with a fundamental invariant neural network method. The photodissociation cross section is calculated using a full-dimensional quantum wave packet method in heliocentric Radau coordinates. The wave packet is represented in angular and radial grids, allowing us to reduce the number of points physically accessible, requiring to push up the spurious states appearing when evaluating the angular kinetic terms, through projection technique. The photodissociation spectra, when employed in astrochemical models to simulate the conditions of the Orion bar, result in a lesser destruction of CH3+ compared to that obtained when utilizing the recommended values in the kinetic database for astrochemistry.

3.
Chemphyschem ; 24(15): e202300291, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37326130

RESUMO

The (H 2 ${{}_{2}}$ CO) 2 ${{}_{2}}$ +OH and H 2 ${{}_{2}}$ CO-OH+H 2 ${{}_{2}}$ CO reaction dynamics are studied theoretically for temperatures below 300 K. For this purpose, a full dimension potential energy surface is built, which reproduces well accurate ab initio calculations. The potential presents a submerged reaction barrier, as an example of the catalytic effect induced by the presence of the third molecule. However, quasi-classical and ring polymer molecular dynamics calculations show that the dominant channel is the dimer-exchange mechanism below 200 K, and that the reactive rate constant tends to stabilize at low temperatures, because the effective dipole of either dimer is reduced with respect to that of formaldehyde alone. The reaction complex formed at low temperatures does not live long enough to produce complete energy relaxation, as assumed in statistical theories. These results show that the reactivity of the dimers cannot explain the large rate constants measured at temperatures below 100 K.

4.
J Chem Phys ; 157(8): 084301, 2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36050009

RESUMO

The cross section and rate constants for the title reaction are calculated for all the spin-orbit states of N+(PJA3) using two statistical approaches, one purely adiabatic and the other one mixing quantum capture for the entrance channel and adiabatic treatment for the products channel. This is made by using a symmetry adapted basis set combining electronic (spin and orbital) and nuclear angular momenta in the reactants channel. To this aim, accurate ab initio calculations are performed separately for reactants and products. In the reactants channel, the three lowest electronic states (without spin-orbit couplings) have been diabatized, and the spin-orbit couplings have been introduced through a model localizing the spin-orbit interactions in the N+ atom, which yields accurate results as compared to ab initio calculations, including spin-orbit couplings. For the products, 11 purely adiabatic spin-orbit states have been determined with ab initio calculations. The reactive rate constants thus obtained are in very good agreement with the available experimental data for several ortho-H2 fractions, assuming a thermal initial distribution of spin-orbit states. The rate constants for selected spin-orbit JA states are obtained, to provide a proper validation of the spin-orbit effects to obtain the experimental rate constants.

5.
Phys Chem Chem Phys ; 24(9): 5489-5505, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35171152

RESUMO

We present quasi-classical trajectory (QCT) cross sections, rate constants, and product state distributions for the D + H+3 → H2D+ + H reaction. Using the same H+4 potential surface, the rate constants obtained from several QCT-based methods correcting for zero-point effects by Gaussian binning the product H2D+ are compared to ring polymer molecular dynamics (RPMD) rate constants [Bulut et al., J. Phys. Chem. A, 2019, 123, 8766] which include quantum effects and to recent experimentally derived rate constants [Bowen et al., J. Chem. Phys., 2021, 154, 084307]. QCT with standard binning predicts rate constants that increase slowly as the temperature decreases from 1500 to 100 K. In contrast, the RPMD rate constants decrease rapidly with decreasing temperature. By 100 K, the QCT standard binning rate constant is more than 3 orders of magnitude larger than the RPMD rate constant. We show that QCT with Gaussian binning and proper normalization captures the zero-point effects and reproduces the RPMD rate constants over a large temperature range. Furthermore, the simple technique of counting only reactive trajectories with vibrational energy above the product zero-point energy matches the RPMD results well down to ∼300 K. The present Gaussian binned rate constants are in fair agreement with new experimentally derived rate constants from 100 to 1500 K. However, because the Gaussian binned rate constants do not include tunneling, important at lower temperatures, and the RPMD and experimentally derived rate constants have significant differences, the roles of the competing effects of zero-point energy, internal excitation of the H+3, and quantum tunneling are not simple and require further study for a consistent picture of the dynamics. Since rate constants for complex forming reactions, such as the title reaction, are difficult to converge with RPMD, alternative QCT-based methods, which include quantum effects and in addition provide product state distributions as described here, are highly desirable.

6.
J Chem Phys ; 154(9): 094305, 2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33685156

RESUMO

A new potential energy surface (PES) and dynamical study of the reactive process of H2CO + OH toward the formation of HCO + H2O and HCOOH + H are presented. In this work, a source of spurious long range interactions in symmetry adapted neural network (NN) schemes is identified, which prevents their direct application for low temperature dynamical studies. For this reason, a partition of the PES into a diabatic matrix plus a NN many-body term has been used, fitted with a novel artificial neural network scheme that prevents spurious asymptotic interactions. Quasi-classical trajectory (QCT) and ring polymer molecular dynamics (RPMD) studies have been carried on this PES to evaluate the rate constant temperature dependence for the different reactive processes, showing good agreement with the available experimental data. Of special interest is the analysis of the previously identified trapping mechanism in the RPMD study, which can be attributed to spurious resonances associated with excitations of the normal modes of the ring polymer.

7.
J Chem Phys ; 154(10): 104104, 2021 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33722048

RESUMO

The non-adiabatic quantum dynamics of the H + H2 + → H2 + H+ charge transfer reactions, and some isotopic variants, is studied with an accurate wave packet method. A recently developed 3 × 3 diabatic potential model is used, which is based on very accurate ab initio calculations and includes the long-range interactions for ground and excited states. It is found that for initial H2 +(v = 0), the quasi-degenerate H2(v' = 4) non-reactive charge transfer product is enhanced, producing an increase in the reaction probability and cross section. It becomes the dominant channel from collision energies above 0.2 eV, producing a ratio between v' = 4 and the rest of v's, which that increase up to 1 eV. The H + H2 + → H2 + + H exchange reaction channel is nearly negligible, while the reactive and non-reactive charge transfer reaction channels are of the same order, except that corresponding to H2(v' = 4), and the two charge transfer processes compete below 0.2 eV. This enhancement is expected to play an important vibrational and isotopic effect that needs to be evaluated. For the three proton case, the problem of the permutation symmetry is discussed when using reactant Jacobi coordinates.

8.
Phys Chem Chem Phys ; 23(13): 7735-7747, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32930276

RESUMO

Full dimensional analytical fits of the coupled potential energy surfaces for the three lower singlet and triplet adiabatic states of H are developed, providing analytic derivatives and non-adiabatic coupling matrix elements. The fits are highly accurate and include an improved description of the long range interactions, including new terms for the description of the long range in the diatomic fits and the atom-diatom dissociation channels. The fits are based on the DIM formalism including three body terms in Hamiltonian matrix elements, each of them obeying S2 permutational symmetry, where the positive charge is placed in either of the three hydrogen atoms, but the full system obeys S3 permutational symmetry, invariant under all permutations of the nuclei. The ab initio points used in the fitting are obtained from a complete basis set extrapolation, made for all electronic states. Total root mean square errors of the fits are 27 and 12 cm-1, for the singlet and triplet states, respectively. The errors in the channels are lower than 2 cm-1 and 6 cm-1 for the H + H and H+ + H2 channels respectively. The new fits have been used to calculate the rovibrational bound states of the lowest singlet and lowest triplet states showing very good agreement with previous calculations in the literature.

9.
J Phys Chem A ; 124(32): 6552-6561, 2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32687711

RESUMO

The OH+ ion is an important constituent of the interstellar medium (ISM). It can be used as a probe of cosmic ray and X-ray ionization rates in molecular clouds as well as a tracer of oxygen chemistry. The deuterated variant of OH+, the OD+ ion, may also be present in the ISM despite the fact that it has not been detected yet. In this paper, we aim at providing quantitative insight into the OD+ chemistry and at accurately studying the possible formation and destruction processes of OD+ in the ISM. We study the formation and destruction of OD+ through the O+ + HD → OD+ + H and OH+ + D ↔ OD+ + H reactions that can occur in diffuse ISM. Reactive rate constants have been obtained from exact state-to-state quantum wave packet calculations for temperatures ranging from 10 to 1000 K. The new theoretical data are validated through a detailed comparison with available experimental data. The formation of OD+ is found to be less efficient than that of OH+. As a first application, the OD+/OH+ abundance ratio in ISM has been evaluated from a simple astrochemical model, and we found that this ratio can be larger than D/H abundance ratio only at low temperatures. These calculations may help in an astrochemical search of OD+ in cold ISM.

10.
J Phys Chem A ; 123(41): 8766-8775, 2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31545608

RESUMO

The title reaction and its isotopic variants are studied using quasi-classical trajectory (QCT) (without taking into account corrections to account for the possible zero point energy breakdown) and ring polymer molecular dynamics (RPMD) methods with a full dimensional and accurate potential energy surface which presents an exchange barrier of approximately 0.144 eV. The QCT rate constant increases when the temperature decreases from 1500 to 10 K. On the contrary, the RPMD rate constant decreases with decreasing temperature, in semiquantitative agreement with recent experimental results. The present RPMD results are in between the thermal and translational experimental rate constants, extracted from the measured data to eliminate the initial vibrational excitation of H3+, obtained in an arc discharge. The difference between the present RPMD results and experimental values is attributed to the possible existence of non thermal vibrational excitation of H3+, not completely removed by the semiempirical model used for the analysis of the experimental results. Also, it is found that, below 200 K, the RPMD trajectories are trapped, forming long-lived collision complexes, with lifetimes longer than 1 ns. These collision complexes can fragment by either redissociating back to reactants or react to products, in the two cases tunneling through the centrifugal and reaction barriers, respectively. The contribution of the formation of the complex to the total deuteration rate should be calculated with more accurate quantum methods, as has been found recently for reactions of larger systems, and the present four atoms system is a good candidate to benchmark the adequacy of RPMD method at temperatures below 100 K.

11.
ACS Earth Space Chem ; 3(7): 1158-1169, 2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31511842

RESUMO

A recent Ring Polymer Molecular Dynamics study of the reactions of OH with methanol and formaldehyde, at zero pressure and below 100 K, has shown the formation of long lived complexes, with long lifetimes, longer than 100 ns for the lower temperatures studied, 20-100 K (del Mazo-Sevillano et al., 2019). These long lifetimes support the existence of multi collision events with the He buffer-gas atoms under experimental conditions, as suggested by several transition state theory studies of these reactions. In this work we study these secondary collisions, as a dynamical approach to study pressure effects on these reactions. For this purpose, the potential energy surfaces of He with H2CO, OH, H2O and HCO are calculated at highly accurate ab initio level. The stability of some of the complexes is studied using Path Integral Molecular dynamics techniques, determining that OH-H2CO complexes can be formed up to 100 K or higher temperatures, while the weaker He-H2CO complexes dissociate at approximately 50 K. The predicted IR intensity spectra shows new features which could help the identification of the OH-H2CO complex. Finally, the He-H2CO + OH and OH-H2CO + He collisions are studied using quassi-classical trajectories, finding that the cross section to produce HCO + H2O products increases with decreasing collision energy, and that it is ten times higher in the He-H2CO + OH case.

12.
J Phys Chem Lett ; 10(8): 1900-1907, 2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-30939028

RESUMO

The quantum dynamics of the title reactions are studied using the ring polymer molecular dynamics (RPMD) method from 20 to 1200 K using recently proposed full dimensional potential energy surfaces which include long-range dipole-dipole interactions. A V-shaped dependence of the reaction rate constants is found with a minimum at 200-300 K, in rather good agreement with the current experimental data. For temperatures above 300 K the reaction proceeds following a direct H-abstraction mechanism. However, below 100 K the reaction proceeds via organic-molecule···OH collision complexes, with very long lifetimes, longer than 10-7 s, associated with quantum roaming arising from the inclusion of quantum effects by the use of RPMD. The long lifetimes of these complexes are comparable to the time scale of the tunnelling to form reaction products. These complexes are formed at zero pressure because of quantum effects and not only at high pressure as suggested by transition state theory (TST) calculations for OH + methanol and other OH reactions. The zero-pressure rate constants reproduce quite well measured ones below 200 K, and this agreement opens the question of how important the pressure effects on the reaction rate constants are, as implied in TST-like formalisms. The zero-pressure mechanism is applicable only to very low gas density environments, such as the interstellar medium, which are not repeatable by experiments.

13.
Phys Chem Chem Phys ; 21(5): 2337-2344, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30656348

RESUMO

The photoelectron spectrum of the X1Σ+ → X+2Σ+ ionizing transition of hydrogen isocyanide (HNC) is measured for the first time at a fixed photon energy (13 eV). The assignment of the spectrum is supported by wave-packet calculations simulating the photoionization transition spectrum and using ab initio calculations of the potential energy surfaces for the three lowest electronic states of the cation. The photoelectron spectrum allows the retrieval of the fundamental of the CN stretching mode of the cationic ground state ([small nu, Greek, tilde]3 = 2260 ± 80 cm-1) and the adiabatic ionization energy of hydrogen isocyanide: IE(HNC) = 12.011 ± 0.010 eV, which is far below that of HCN (IE(HCN) = 13.607 eV). In light of this latter result, the thermodynamics of the HCN+/HNC+ isomers is discussed and a short summary of the values available in the literature is given.

14.
Phys Chem Chem Phys ; 20(40): 25951-25958, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30294740

RESUMO

Is the rise of the rate constant measured in laval expansion experiments of OH with organic molecules at low temperatures due to the reaction between the reactants or due to the formation of complexes with the buffer gas? This question has importance for understanding the evolution of prebiotic molecules observed in different astrophysical objects. Among these molecules methanol is one of the most widely observed, and its reaction with OH has been studied by several groups showing a fast increase in the rate constant under 100 K. Transition state theory doesn't reproduce this behavior and here dynamical calculations are performed on a new full dimensional potential energy surface developed for this purpose. The calculated classical reactive cross sections show an increase at low collision energies due to a complex forming mechanism. However, the calculated rate constant at temperatures below 100 K remains lower than the observed one. Quantum effects are likely responsible for the measured behavior at low temperatures.

15.
Astrophys J ; 862(1)2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30190625

RESUMO

The presence of SiS in space seems to be restricted to a few selected types of astronomical environments. It is long known to be present in circumstellar envelopes around evolved stars and it has also been detected in a handful of star-forming regions with evidence of outflows, like Sgr B2, Orion KL and more recently L1157-B1. The kinetics of reactions involving SiS is very poorly known and here we revisit the chemistry of SiS in space by studying some potentially important reactions of formation and destruction of this molecule. We calculated ab initio potential energy surfaces of the SiOS system and computed rate coefficients in the temperature range 50-2500 K for the reaction of destruction of SiS, in collisions with atomic O, and of its formation, through the reaction between Si and SO. We find that both reactions are rapid, with rate coefficients of a few times 10-10 cm3 s-1, almost independent of temperature. In the reaction between Si and SO, SiO production is 5-7 times more efficient than SiS formation. The reaction of SiS with O atoms can play an important role in destroying SiS in envelopes around evolved stars. We built a simple chemical model of a postshock gas to study the chemistry of SiS in protostellar outflows and we found that SiS forms with a lower abundance and later than SiO, that SiS is efficiently destroyed through reaction with O, and that the main SiS-forming reactions are Si + SO and Si + SO2.

16.
J Phys Chem Lett ; 9(9): 2133-2137, 2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29633841

RESUMO

Because of its fundamental importance in astrochemistry, the H2 + H3+ → H3+ + H2 reaction has been studied experimentally in a wide temperature range. Theoretical studies of the title reaction significantly lag primarily because of the challenges associated with the proper treatment of the zero-point energy (ZPE). As a result, all previous theoretical estimates for the ratio between a direct proton-hop and indirect exchange (via the H5+ complex) channels deviate from the experiment, in particular, at lower temperatures where the quantum effects dominate. In this work, the ring polymer molecular dynamics (RPMD) method is applied to study this reaction, providing very good agreement with the experiment. RPMD is immune to the shortcomings associated with the ZPE leakage and is able to describe the transition from direct to indirect mechanisms below room temperature. We argue that RPMD represents a useful tool for further studies of numerous ZPE-sensitive chemical reactions that are of high interest in astrochemistry.

17.
Phys Chem Chem Phys ; 20(8): 5415-5426, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-28959812

RESUMO

A new method is proposed to analytically represent the potential energy surface of reactions involving polyatomic molecules capable of accurately describing long-range interactions and saddle points, needed to describe low-temperature collisions. It is based on two terms, a reactive force field term and a many-body term. The reactive force field term accurately describes the fragments, long-range interactions among them and the saddle points for reactions. The many-body term increases the desired accuracy everywhere else. This method has been applied to the OH + H2CO → H2O + HCO reaction, giving a barrier of 27.4 meV. The simulated classical rate constants with this potential are in good agreement with recent experimental results [Ocaña et al., Astrophys. J., 2017, submitted], showing an important increase at temperatures below 100 K. The reaction mechanism is analyzed in detail here, and explains the observed behavior at low energy by the formation of long-lived collision complexes, with roaming trajectories, with a capture observed for very long impact parameters, >100 a.u., determined by the long-range dipole-dipole interaction.

18.
J Chem Phys ; 147(15): 154301, 2017 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-29055337

RESUMO

The guest-host intermolecular potentials for the ground states of Br2 in the tetrakaidecahedral (T), pentakaidecahedral (P), and hexakaidecahedral clathrate (H) cages have been calculated using ab initio local correlation methods. Applying the local correlation energy partitioning analysis together with first-order symmetry adapted perturbation theory, we obtain a detailed understanding of the nature of the interactions. In particular, the debated question concerning the possible presence of halogen bonding (XB) is carefully analyzed. In the case of the T cage, given its smaller size, the Br-O distance is too short leading to a larger exchange-repulsion for XB orientations which therefore do not represent minima. For the other two cages, the Br-O distance is too large leading to little orbital overlap effects and thus weaker donor-acceptor interactions; however, these orientations coincide with the global minima.

19.
Astrophys J ; 838(1)2017 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-28522878

RESUMO

The impact of the photodissociation of HCN and HNC isomers is analyzed in different astrophysical environments. For this purpose, the individual photodissociation cross section of HCN and HNC isomers have been calculated in the 7-13.6 eV photon energy range for a temperature of 10 K. These calculations are based on the ab initio calculation of three-dimensional adiabatic potential energy surfaces of the 21 lower electronic states. The cross sections are then obtained using a quantum wave packet calculation of the rotational transitions needed to simulate a rotational temperature of 10 K. The cross section calculated for HCN shows significant differences with respect to the experimental one, and this is attributed to the need of considering non-adiabatic transitions. Ratios between the photodissociation rates of HCN and HNC under different ultraviolet radiation fields have been computed by renormalizing the rates to the experimental one. It is found that HNC is photodissociated faster than HCN by a factor of 2.2, for the local interstellar radiation field, and 9.2, for the solar radiation field at 1 au. We conclude that to properly describe the HNC/HCN abundance ratio in astronomical environments illuminated by an intense ultraviolet radiation field it is necessary to use different photodissociation rates for each of the two isomers, obtained by integrating the product of the photodissociation cross sections and ultraviolet radiation field over the relevant wavelength range.

20.
Phys Chem Chem Phys ; 18(16): 11391-400, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27055725

RESUMO

State-to-state cross-sections for the S(+) + H2(v,j) → SH(+)(v',j') + H endothermic reaction are obtained using quantum wave packet (WP) and quasi-classical (QCT) methods for different initial ro-vibrational H2(v,j) over a wide range of translation energies. The final state distribution as a function of the initial quantum number is obtained and discussed. Additionally, the effect of the internal excitation of H2 on the reactivity is carefully studied. It appears that energy transfer among modes is very inefficient that vibrational energy is the most favorable for the reaction, and rotational excitation significantly enhances the reactivity when vibrational energy is sufficient to reach the product. Special attention is also paid to an unusual discrepancy between classical and quantum dynamics for low rotational levels while agreement improves with rotational excitation of H2. An interesting resonant behaviour found in WP calculations is also discussed and associated with the existence of roaming classical trajectories that enhance the reactivity of the title reaction. Finally, a comparison with the experimental results of Stowe et al. for S(+) + HD and S(+) + D2 reactions exhibits a reasonably good agreement with those results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...