Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Talanta ; 152: 463-74, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26992543

RESUMO

The identification of interdicted nuclear or radioactive materials requires the application of dedicated techniques. In this work, a new approach for characterizing powder of uranium ore concentrates (UOCs) is presented. It is based on image texture analysis and multivariate data modelling. 26 different UOCs samples were evaluated applying the Angle Measure Technique (AMT) algorithm to extract textural features on samples images acquired at 250× and 1000× magnification by Scanning Electron Microscope (SEM). At both magnifications, this method proved effective to classify the different types of UOC powder based on the surface characteristics that depend on particle size, homogeneity, and graininess and are related to the composition and processes used in the production facilities. Using the outcome data from the application of the AMT algorithm, the total explained variance was higher than 90% with Principal Component Analysis (PCA), while partial least square discriminant analysis (PLS-DA) applied only on the 14 black colour UOCs powder samples, allowed their classification only on the basis of their surface texture features (sensitivity>0.6; specificity>0.6). This preliminary study shows that this method was able to distinguish samples with similar composition, but obtained from different facilities. The mean angle spectral data obtained by the image texture analysis using the AMT algorithm can be considered as a specific fingerprint or signature of UOCs and could be used for nuclear forensic investigation.

2.
Inorg Chem ; 52(7): 3491-509, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23432204

RESUMO

Reducing the uncertainties associated with extrapolation to very long term of corrosion data obtainable from laboratory tests on a relatively young spent nuclear fuel is a formidable challenge. In a geologic repository, spent nuclear fuel may come in contact with water tens or hundreds of thousands of years after repository closure. The corrosion behavior will depend on the fuel properties and on the conditions characterizing the near field surrounding the spent fuel at the time of water contact. This paper summarizes the main conclusions drawn from multiyear experimental campaigns performed at JRC-ITU to study corrosion behavior and radionuclide release from spent light water reactor fuel. The radionuclide release from the central region of a fuel pellet is higher than that from the radial periphery, in spite of the higher burnup and the corresponding structural modifications occurring at the pellet rim during irradiation. Studies on the extent and time boundaries of the radiolytic enhancement of the spent fuel corrosion rate indicate that after tens or hundreds of thousands of years have elapsed, very small or no contribution to the enhanced corrosion rate has to be expected from α radiolysis. A beneficial effect inhibiting spent fuel corrosion due to the hydrogen overpressure generated in the near field by iron corrosion is confirmed. The results obtained so far point toward a benign picture describing spent fuel corrosion in a deep geologic repository. More work is ongoing to further reduce uncertainties and to obtain a full description of the expected corrosion behavior of spent fuel.

4.
Inorg Chem ; 43(22): 6922-35, 2004 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-15500330

RESUMO

Analysis of X-ray absorption fine structure spectra of UO(2+x) for x = 0-0.20 (UO(2)--U(4)O(9)) reveals that the adventitious O atoms are incorporated as oxo groups with U--O distances of 1.74 A, most likely associated with U(VI), that occur in clusters so that the UO(2) fraction of the material largely remains intact. In addition to the formation of some additional longer U--O bonds, the U sublattice consists of an ordered portion that displays the original U--U distance and a spectroscopically silent, glassy part. This is very different from previous models derived from neutron diffraction that maintained long U--O distances and high U--O coordination numbers. UO(2+x) also differs from PuO(2+x) in its substantially shorter An-oxo distances and no sign of stable coordination with H(2)O and its hydrolysis products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...