Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 313(6): L1154-L1163, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28912379

RESUMO

Pneumoconiosis is an occupational disease accompanied by long-term lung impairment, for which prediction of prognosis is poorly understood because of the complexity of the inhaled particles. Micro-proton-induced X-ray emission (micro-PIXE) analysis, which is advantageous for high-sensitivity, two-dimensional element mapping of lung tissues, was used to investigate element-based predictive factors of prognosis in Chinese patients with welder's and coal miner's pneumoconiosis. Chest radiographs and lung function tests showed that most of the coal miners deteriorated, whereas symptoms in some welders were alleviated after 5 yr, as determined by comparing percent vital capacity (%VC) and forced expiratory volume in the 1st second over forced vital capacity (FEV1.0/FVC) to values taken at the initial diagnosis. Micro-PIXE analysis suggested that the most abundant particulates in welder's pneumoconiosis were Fe, Mn, and Ti (metallic oxide),which were accompanied by particulates containing Si, Al, and Ca (aluminum silicate) or only Si (SiO2); the most abundant particulates in coal miner's pneumoconiosis were composed of C, Si, Al, K, and Ti, which were accompanied by particulates containing Ca or Fe. Particulates containing Al, Si, S, K, Ca, and Ti (orthoclase and anorthite) were correlated with severity of fibrosis. Multivariable linear regression suggested that long-term FEV1.0/FVC decrease was independently associated with Si and smoking index, whereas %VC decrease was associated with Si and Ti. A risk index comprised of these factors was developed to predict the prognosis of pneumoconiosis. Micro-PIXE analysis is feasible for the evaluation of elemental composition and dust exposure, especially for patients whose exposure is mixed or uncertain.


Assuntos
Antracose , Minas de Carvão , Elementos Químicos , Pulmão , Exposição Ocupacional/efeitos adversos , Espectrometria por Raios X , Soldagem , Adulto , Antracose/diagnóstico por imagem , Antracose/metabolismo , Seguimentos , Humanos , Pulmão/diagnóstico por imagem , Pulmão/metabolismo , Masculino , Pessoa de Meia-Idade
2.
Micron ; 88: 54-9, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27399802

RESUMO

The influence of damage induced by 2MeV protons on CdZnTe radiation detectors is investigated using ion beam induced charge (IBIC) microscopy. Charge collection efficiency (CCE) in irradiated region is found to be degraded above a fluence of 3.3×10(11)p/cm(2) and the energy spectrum is severely deteriorated with increasing fluence. Moreover, CCE maps obtained under the applied biases from 50V to 400V suggests that local radiation damage results in significant degradation of CCE uniformity, especially under low bias, i. e., 50V and 100V. The CCE nonuniformity induced by local radiation damage, however, can be greatly improved by increasing the detector applied bias. This bias-dependent effect of 2MeV proton-induced radiation damage in CdZnTe detectors is attributed to the interaction of electron cloud and radiation-induced displacement defects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...