Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
ACS Omega ; 9(20): 21974-21982, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38799303

RESUMO

To investigate the effect of combustion temperatures on element transformation of ash, bamboo was fired using a muffle furnace at 550, 600, 700, 800, 900, and 1000 °C. Chemical compositions, micromorphology, and mineral and thermal behavior of ash were characterized. The main components included K2O, SiO2, P2O5, MgO, and CaO at a temperature of 550 °C. The high temperature decreased the content of K2O from 63.03 to 35.71% to improve the fusion characteristics of bamboo ash. 700 °C was a key temperature for designing a combustion system of bamboo, where bamboo ash had a maximum volatility. The mineral phases were chlorides, carbonates, and sulfates below a temperature of 700 °C, which transformed to complex silicates, aluminosilicates, and phosphates above a temperature of 700 °C. The temperature ranges of the three main stages were 550-980, 980-1190, and 1190-1500 °C, corresponding to mass losses of 11.52, 6.13, and 17.17%, respectively.

2.
Molecules ; 29(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543035

RESUMO

To investigate the influence of deashing on fusion characteristics, a combined method of water and acid washing with different sequences (water washing followed by acid washing, and acid washing followed by water washing) was used to treat the biochar of bamboo shoot shells (BBSSs). The results show that deashing decreased the K content of the biochar from 50.3% to 1.08% but increased the Si content from 33.48% to 89.15%. The formation of silicates and aluminosilicates from alkali metal oxides with silicon was an inevitable result of ash phase transformation at the high temperatures used to improve the fusion temperature (>1450 °C). The thermochemical behavior of ash mainly occurs at 1000 °C. The deashing treatment significantly reduced the reaction intensity during the high-temperature process. This significantly increased the thermal stability of the ash. The adjustment of the washing sequence had a slight impact on the chemical compositions, but the differences in ash micromorphology were obvious. Deashing treatments with different washing sequences can significantly improve ash fusion properties effectively and reduce the risk of scaling, slagging, and corrosion. This study provides a new and reasonable strategy for the deashing of biochar to commercially utilize bamboo shoot shell resources.


Assuntos
Álcalis , Carvão Vegetal , Carvão Vegetal/química , Temperatura , Água , Cinza de Carvão
3.
Sci Total Environ ; 836: 155635, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35513158

RESUMO

Diffuse pollution of the soil by phthalates and heavy metals causes numerous concerns. Their respective fates when coexisting require further investigation. In this study, di(2-ethylhexyl) phthalate (DEHP) and Cd/Cu were used as subjects, focusing on their behavior in Mollisols under combined pollution based on their concentration, fractionation, and leaching. The results indicated that when the two pollutants coexist, the dissipation rate of DEHP in the soil decreased, and its half-life was extended from 30.81 to 40.53 (Cd) and 35.40 d (Cu). DEHP altered the distribution of Cd and Cu in the soil, and this effect persisted after most of the DEHP had degraded. Leaching tests showed that the interaction of DEHP with Cd and Cu hindered leaching during the first rainfall event, but as DEHP degraded and Cd/Cu stabilized, the trapped pollutants were gradually released in subsequent rainfall events. Additionally, to investigate the partitioning of pollutants between soil water and solid surfaces, a diffusion model of DEHP and metal ions on the surface of montmorillonite (high specific surface area adsorbents abundant in soils) was built using molecular dynamics simulations. Simulations revealed their density distribution on the clay surface increased synergistically, whereas their diffusion was antagonistic. This study provides basic data and theoretical support concerning the ecological risk assessment of combined phthalate and heavy metals pollution in soil.


Assuntos
Dietilexilftalato , Metais Pesados , Poluentes do Solo , Cádmio , China , Humanos , Metais Pesados/análise , Ácidos Ftálicos , Solo , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...