Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 88(11): 6995-7005, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37154738

RESUMO

An efficient three-component reaction to access spiro[benzo[a]acridine-12,4'-imidazolidine]-2',5'-dione derivatives has been developed through the ring-opening and recyclization process of isatins and dehydroxylation of 2-naphthol, which is different from their conventional reaction modes. Experimental observations suggest that p-toluenesulfonic acid is the key factor that promotes the success of this synthetic strategy. The research provided a novel approach for the construction of spiro compounds from isatins and 2-naphthol in organic synthesis.

2.
Anal Chim Acta ; 1182: 338937, 2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34602202

RESUMO

DNA molecular machines have attracted immense interest for their potential in biosensing, drug delivery, and cellular imaging. Herein, we report a duplex-specific nuclease (DSN) powered nanowalker that can autonomously and progressively move on a spherical three-dimensional track, which is constructed by functionalizing a 13 nm diameter gold nanoparticle (AuNP) with densely mismatched DNA duplexes. The motion is initiated by an RNA walking strand, and in its absence, the walker is suppressed because the DSN is inactive toward the mismatched DNA duplexes. Once the walking strand is added, perfectly matched DNA-RNA hybrid is formed via a toehold-mediated displacement reaction between the walking strand and mismatched duplex. Thereafter, the DNA-RNA hybrid is simultaneously cleaved by DSN, by releasing the walking strand, which autonomously moves on the track with the aid of DSN. The present study provides a novel energy input and power mechanism for the operation of 3-D nanowalker with high efficiency. Moreover, the proposed nanowalker can be designed in a target microRNA (miRNA)-specific manner by altering the mismatched duplexes, and it exhibits femtomole level sensitivity in both singleplexed and multiplexed sensing of three miRNA targets. In addition, multiplexed quantification of the three miRNAs in biological samples is achieved, further suggesting that the proposed nanowalker has immense potential in biomedical research and early diagnosis of clinical disorders.


Assuntos
Nanopartículas Metálicas , MicroRNAs , Sistemas de Liberação de Medicamentos , Endonucleases , Ouro
3.
Biosens Bioelectron ; 169: 112605, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32947079

RESUMO

Cholinesterases (ChEs) are important indicators of neurological disease, hepatocellular carcinoma, and organophosphate poisoning. In this work, a MnO2 switch-bridged DNA walker was developed for ultrasensitive sensing of ChEs activity. The fuel strands loaded MnO2 switch was designed to bridge the hydrolysis activity of ChEs and the running of the DNA walker. Under the action of ChE, the substrate butyrylcholine is first catalytically hydrolyzed to thiocholine, which then mediates MnO2 nanosheet reduction to Mn2+, releasing the fuel strands into solution. The fuel strands as substitute targets then trigger the continuous operation of DNA walker with the aid of Mn2+, generating detectable fluorescence responses. The detection of ChE activity is converted to DNA detection in this method. Benefited from the robust operation and amplification effect of DNA walker, a wide linear range between the BChE activity and fluorescence intensity of nearly six orders of magnitude (1000-0.005 U/mL) and a limit of detection as low as 0.0008 U/mL are achieved. This allows the direct determination of BChE activity in clinical serum samples without any pretreatments. Moreover, the proposed method has remarkable capabilities for inhibitor (organophosphorus pesticide) screening and quantification, and organophosphorus pesticide detection in real samples is also achieved. Therefore, the MnO2 switch-bridged DNA walker represents a powerful tool for ultrasensitive sensing of ChEs and organophosphorus pesticides, and has great application potential in clinical diagnosis, therapeutics, and drug screening.


Assuntos
Técnicas Biossensoriais , Praguicidas , Colinesterases , DNA , Compostos de Manganês , Compostos Organofosforados , Óxidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...