Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 6(6): e21153, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21695056

RESUMO

BACKGROUND: The innate immune responses to virus infection are initiated by either Toll-like receptors (TLR3/7/8/9) or cytoplasmic double-stranded RNA (dsRNA)-recognizing RNA helicases RIG-I and MDA5. To avoid causing injury to the host, these signaling pathways must be switched off in time by negative regulators. METHODOLOGY/PRINCIPAL FINDINGS: Through yeast-two hybrid screening, we found that an ubiquitin-like protein named protein linking integrin-associated protein to cytoskeleton 1(PLIC-1 or Ubiquilin 1) interacted with the Toll/interleukin-1 receptor (TIR) domain of TLR4. Interestingly, PLIC-1 had modest effect on TLR4-mediated signaling, but strongly suppressed the transcriptional activation of IFN-ß promoter through the TLR3-Trif-dependent pathway. Concomitantly, reduction of endogenous PLIC-1 by short-hairpin interfering RNA (shRNA) enhanced TLR3 activation both in luciferase reporter assays as well as in new castle disease virus (NDV) infected cells. An interaction between PLIC-1 and Trif was confirmed in co-immunoprecipitation (Co-IP) and GST-pull-down assays. Subsequent confocal microscopic analysis revealed that PLIC-1 and Trif colocalized with the autophagosome marker LC3 in punctate subcellular structures. Finally, overexpression of PLIC-1 decreased Trif protein abundance in a Nocodazole-sensitive manner. CONCLUSIONS: Our results suggest that PLIC-1 is a novel inhibitor of the TLR3-Trif antiviral pathway by reducing the abundance of Trif.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Transdução de Sinais , Receptor 3 Toll-Like/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Relacionadas à Autofagia , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Genes Reporter/genética , Células HEK293 , Humanos , Interferon beta/genética , Luciferases/genética , NF-kappa B/metabolismo , Vírus da Doença de Newcastle/efeitos dos fármacos , Vírus da Doença de Newcastle/fisiologia , Poli I-C/farmacologia , Regiões Promotoras Genéticas/genética , Transporte Proteico/efeitos dos fármacos , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Técnicas do Sistema de Duplo-Híbrido
2.
J Biol Chem ; 284(20): 13869-13880, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19282287

RESUMO

Ikaros encodes a zinc finger protein that is involved in gene regulation and chromatin remodeling. The majority of Ikaros localizes at pericentromeric heterochromatin (PC-HC) where it regulates expression of target genes. Ikaros function is controlled by posttranslational modification. Phosphorylation of Ikaros by CK2 kinase determines its ability to bind DNA and exert cell cycle control as well as its subcellular localization. We report that Ikaros interacts with protein phosphatase 1 (PP1) via a conserved PP1 binding motif, RVXF, in the C-terminal end of the Ikaros protein. Point mutations of the RVXF motif abolish Ikaros-PP1 interaction and result in decreased DNA binding, an inability to localize to PC-HC, and rapid degradation of the Ikaros protein. The introduction of alanine mutations at CK2-phosphorylated residues increases the half-life of the PP1-nonbinding Ikaros mutant. This suggests that dephosphorylation of these sites by PP1 stabilizes the Ikaros protein and prevents its degradation. In the nucleus, Ikaros forms complexes with ubiquitin, providing evidence that Ikaros degradation involves the ubiquitin/proteasome pathway. In vivo, Ikaros can target PP1 to the nucleus, and a fraction of PP1 colocalizes with Ikaros at PC-HC. These data suggest a novel function for the Ikaros protein; that is, the targeting of PP1 to PC-HC and other chromatin structures. We propose a model whereby the function of Ikaros is controlled by the CK2 and PP1 pathways and that a balance between these two signal transduction pathways is essential for normal cellular function and for the prevention of malignant transformation.


Assuntos
Núcleo Celular/metabolismo , Centrômero/metabolismo , Fator de Transcrição Ikaros/metabolismo , Modelos Biológicos , Proteína Fosfatase 1/metabolismo , Motivos de Aminoácidos/fisiologia , Animais , Linhagem Celular Tumoral , Núcleo Celular/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Centrômero/genética , DNA/metabolismo , Humanos , Fator de Transcrição Ikaros/genética , Camundongos , Fosforilação/fisiologia , Mutação Puntual , Ligação Proteica/fisiologia , Proteína Fosfatase 1/genética , Estabilidade Proteica , Transdução de Sinais/fisiologia , Ubiquitina/genética , Ubiquitina/metabolismo
3.
J Biol Chem ; 283(13): 8291-300, 2008 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-18223295

RESUMO

Ikaros encodes a zinc finger protein that is involved in heritable gene silencing. In hematopoietic cells, Ikaros localizes to pericentromeric heterochromatin (PC-HC) where it recruits its target genes, resulting in their activation or repression via chromatin remodeling. The function of Ikaros is controlled by post-translational modifications. CK2 kinase has been shown to phosphorylate Ikaros at its C terminus, affecting cell cycle progression. Using in vivo labeling of murine thymocytes followed by phosphopeptide mapping, we identified four novel Ikaros phosphorylation sites. Functional analysis of phosphomimetic mutants showed that the phosphorylation of individual amino acids determines the affinity of Ikaros toward probes derived from PC-HC. In vivo experiments demonstrated that targeting of Ikaros to PC-HC is regulated by phosphorylation. The ability of Ikaros to bind the upstream regulatory elements of its known target gene terminal deoxynucleotidyltransferase (TdT) was decreased by phosphorylation of two amino acids. In thymocytes, Ikaros acts as a repressor of the TdT gene. Induction of differentiation of thymocytes with phorbol 12-myristate 13-acetate plus ionomycin results in transcriptional repression of TdT expression. This process has been associated with increased binding of Ikaros to the upstream regulatory element of TdT. Phosphopeptide analysis of in vivo-labeled thymocytes revealed that Ikaros undergoes dephosphorylation during induction of thymocyte differentiation and that dephosphorylation is responsible for increased DNA binding affinity of Ikaros toward the TdT promoter. We propose a model whereby reversible phosphorylation of Ikaros at specific amino acids controls the subcellular localization of Ikaros as well as its ability to regulate TdT expression during thymocyte differentiation.


Assuntos
Centrômero/genética , Centrômero/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Fator de Transcrição Ikaros/metabolismo , Sequência de Aminoácidos , Aminoácidos/genética , Aminoácidos/metabolismo , Animais , Caseína Quinase II/metabolismo , Diferenciação Celular , Linhagem Celular , DNA/metabolismo , Humanos , Fator de Transcrição Ikaros/química , Fator de Transcrição Ikaros/genética , Camundongos , Dados de Sequência Molecular , Fosforilação , Regiões Promotoras Genéticas/genética , Ligação Proteica , Espectrometria de Massas em Tandem , Timo/citologia , Timo/metabolismo
4.
J Biol Chem ; 282(4): 2538-47, 2007 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-17135265

RESUMO

The Ikaros gene is alternately spliced to generate multiple zinc finger proteins involved in gene regulation and chromatin remodeling. Whereas murine studies have provided important information regarding the role of Ikaros in the mouse, little is known of Ikaros function in human. We report functional analyses of the two largest human Ikaros (hIK) isoforms, hIK-VI and hIK-H, in T cells. Abundant expression of hIK-H, the largest described isoform, is restricted to human hematopoietic cells. We find that the DNA binding affinity of hIK-H differs from that of hIK-VI. Co-expression of hIk-H with hIk-VI alters the ability of Ikaros complexes to bind DNA motifs found in pericentromeric heterochromatin (PC-HC). In the nucleus, hIK-VI is localized solely in PC-HC, whereas the hIK-H protein exhibits dual centromeric and non-centromeric localization. Mutational analysis defined the amino acids responsible for the distinct DNA binding ability of hIK-H, as well as the sequence required for the specific subcellular localization of this isoform. In proliferating cells, the binding of hIK-H to the upstream regulatory region of known Ikaros target genes correlates with their positive regulation by Ikaros. Results suggest that expression of hIK-H protein restricts affinity of Ikaros protein complexes toward specific PC-HC repeats. We propose a model, whereby the binding of hIK-H-deficient Ikaros complexes to the regulatory sequence of target genes would recruit these genes to the restrictive pericentromeric compartment, resulting in their repression. The presence of hIK-H in the Ikaros complex would alter its affinity for PC-HC, leading to chromatin remodeling and activation of target genes.


Assuntos
Fator de Transcrição Ikaros , Linfócitos T/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Humanos , Fator de Transcrição Ikaros/genética , Fator de Transcrição Ikaros/metabolismo , Ativação Linfocitária/genética , Camundongos , Modelos Moleculares , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
5.
J Immunol ; 176(3): 1355-62, 2006 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-16424162

RESUMO

To date, much of our knowledge about the signaling networks involved in the innate immune response has come from studies using nonphysiologic model systems rather than actual immune cells. In this study, we used a dual-tagging proteomic strategy to identify the components of the MyD88 signalosome in murine macrophages stimulated with lipid A. This systems approach revealed 16 potential MyD88-interacting partners, one of which, flightless I homolog (Fliih) was verified to interact with MyD88 and was further characterized as a negative regulator of the TLR4-MyD88 pathway. Conversely, a reduction in endogenous Fliih by small-interfering RNA enhanced the activation of NF-kappaB, as well as cytokine production by LPS. Results from immunoprecipitation and a two-hybrid assay further indicated that Fliih directly interfered with the formation of the TLR4-MyD88 signaling complex. These results in turn suggest a new basis for the regulation of the TLR pathway by Fliih.


Assuntos
Proteínas do Citoesqueleto/fisiologia , Regulação para Baixo/imunologia , Transdução de Sinais/imunologia , Receptores Toll-Like/antagonistas & inibidores , Receptores Toll-Like/fisiologia , Actinas/química , Actinas/genética , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Transporte , Linhagem Celular , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Humanos , Espectrometria de Massas , Camundongos , Proteínas dos Microfilamentos , Dados de Sequência Molecular , Fator 88 de Diferenciação Mieloide , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/metabolismo , Transativadores
6.
J Proteome Res ; 4(3): 941-9, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15952741

RESUMO

Up to date, few successes have been achieved to identify the signaling molecules directly from immune cells due to their low-abundance and dynamic nature. Here, we designed an in vivo dual-tagging quantitative approach that integrated epitope-tagging which allows single affinity purification of the natural complexes formed at real-time, and amino acid-coded mass tagging (AACT) that assists mass spectrometry-based quantitative measurement, to identify the specific components of a signaling complex formed in macrophage cells upon lipopolysaccharide (LPS) stimulation. The sensitivity and accuracy of this quantitative method are significantly higher than those of tandem affinity purification, because the multiple step of purifications are avoided to preserve weakly interacting molecules. We identified a number of proteins that interact with MyD88, a critical adaptor protein in innate immune response, in macrophages upon stimulation. Among those newly identified MyD88-interacting partners, FLAP-1 was found to be an activator of NF-kappaB, the key transcription factor in immune response. This integrated approach provides global information on the functional link between MyD88 and other proteins in transducing the TLR-mediated signal and is generally applicable to in vivo analyses of other signaling pathways.


Assuntos
Imunidade Inata , Macrófagos Alveolares/imunologia , Mapeamento de Interação de Proteínas/métodos , Proteômica/métodos , Transdução de Sinais/imunologia , Proteínas Ativadoras de 5-Lipoxigenase , Proteínas Adaptadoras de Transdução de Sinal , Animais , Antígenos de Diferenciação/metabolismo , Proteínas de Transporte , Linhagem Celular , Lipopolissacarídeos/farmacologia , Macrófagos Alveolares/efeitos dos fármacos , Espectrometria de Massas , Proteínas de Membrana , Camundongos , Técnicas de Sonda Molecular , Fator 88 de Diferenciação Mieloide , NF-kappa B/metabolismo , Receptores Imunológicos/metabolismo , Transdução de Sinais/efeitos dos fármacos
7.
Mol Cell Biol ; 23(7): 2543-55, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12640135

RESUMO

Toll-like receptor 4 (TLR4) mediates the host response to lipopolysaccharide (LPS) by promoting the activation of pro- and anti-inflammatory cytokine genes. To activate each gene, numerous signal transduction pathways are required. The adaptor proteins MyD88 and TIRAP contribute to the activation of several and possibly all pathways via direct interactions with TLR4's Toll/interleukin-1 receptor (IL-1R) (TIR) domain. However, additional adaptors that are required for the activation of specific subsets of pathways may exist, which could contribute to the differential regulation of target genes. Furthermore, it remains unknown whether direct interactions that have been reported between TIR domains and other proteins are required for TLR4 signaling. To address these issues, we systematically mutated the TLR4 TIR domain in the context of a CD4/TLR4 fusion protein. Several exposed residues defining at least two structural surfaces were required in macrophages for activation of the proinflammatory IL-12 p40 and anti-inflammatory IL-10 promoters, as well as promoters dependent on individual transcription factors. Interestingly, the same residues were required by all promoters tested, suggesting that the signaling pathways diverge downstream of the adaptors. The mutant phenotypes provide a framework for future studies of TLR4 signaling, as the interaction supported by each critical surface residue will need to be defined.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Drosophila , Glicoproteínas de Membrana/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais/fisiologia , Animais , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Linhagem Celular , Citometria de Fluxo , Humanos , Interleucina-10/genética , Interleucina-12/genética , Subunidade p40 da Interleucina-12 , Rim/citologia , Rim/metabolismo , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Glicoproteínas de Membrana/genética , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , NF-kappa B/metabolismo , Fenótipo , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína/fisiologia , Subunidades Proteicas/genética , Receptores de Superfície Celular/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Homologia de Sequência de Aminoácidos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Relação Estrutura-Atividade , Receptor 4 Toll-Like , Receptores Toll-Like , Fator de Transcrição AP-1/metabolismo
8.
Genes Dev ; 16(23): 2985-90, 2002 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-12464629

RESUMO

Many nuclear proteins are inactivated during mitotic entry, presumably as a prerequisite to chromatin condensation and cell division. C2H2 zinc fingers define the largest transcription factor family in the human proteome. The linker separating finger motifs is highly conserved and resembles TGEKP in more than 5000 occurrences. However, the reason for this conservation is not fully understood. We demonstrate that all three linkers in the DNA-binding domain of Ikaros are phosphorylated during mitosis. Phosphomimetic substitutions abolished DNA-binding and pericentromeric localization. A linker within Sp1 was also phosphorylated, suggesting that linker phosphorylation provides a global mechanism for inactivation of the C2H2 family.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Mitose/fisiologia , Dedos de Zinco/fisiologia , Sequência de Aminoácidos , Animais , Ciclo Celular/fisiologia , Fator de Transcrição Ikaros , Camundongos , Dados de Sequência Molecular , Mutação , Fosforilação , Estrutura Terciária de Proteína/fisiologia , Fatores de Transcrição/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...